Simulation of Store-Operated Calcium Entry in Neurons

J. Hartmann, R. M. Karl, R. P. Alexander, et al., “STIM1 controls neuronal Ca2+ signaling, mGluR1-dependent synaptic transmission, and cerebellar motor behavior,” Neuron, 82, No. 3, 635−644 (2014); doi: https://doi.org/10.1016/j.neuron.2014.03.027.

Article  CAS  PubMed  Google Scholar 

J. Lalonde, G. Saia, and G., Gill, “Store-operated calcium entry promotes the degradation of the transcription factor Sp4 in resting neurons,” Sci. Signal., 7, No. 328, ra51 (2014); doi: https://doi.org/10.1126/scisignal.2005242.

S. Samtleben, B. Wachter, and R. Blum, “Store-operated calcium entry compensates fast ER calcium loss in resting hippocampal neurons,” Cell Calcium, 58, No. 2, 147−159 (2015); doi: https://doi.org/10.1016/j.ceca.2015.04.002.

Article  CAS  PubMed  Google Scholar 

T. Szikra, K. Cusato, W. B. Thoreson, et al., “Depletion of calcium stores regulates calcium influx and signal transmission in rod photoreceptors”, J. Physiol., 586, No. 20, 4859−4875 (2008); doi: https://doi.org/10.1113/jphysiol.2008.160051.

Article  CAS  PubMed  PubMed Central  Google Scholar 

M. Prakriya and R. S. Lewis, “Store-operated calcium channels,” Physiol. Rev., 95, No. 4, 1383−1436 (2015); doi: https://doi.org/10.1152/physrev.00020.2014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

R. M. Luik, M. M. Wu, J. Buchanan, and R. S. Lewis, “The elementary unit of store-operated Ca2+ entry: local activation of CRAC channels by STIM1 at ER-plasma membrane junctions,” J. Cell Biol., 174, No. 6, 815−825 (2006); doi: https://doi.org/10.1083/jcb.200604015.

Article  CAS  PubMed  PubMed Central  Google Scholar 

T. Wegierski and J. Kuznicki, “Neuronal calcium signalling via store-operated channels in health and disease,” Cell Calcium, 74, 102−111 (2018); doi: https://doi.org/10.1016/j.ceca.2018.07.001.

Article  CAS  PubMed  Google Scholar 

H. L. Ong, K. P. Subedi, G. Y. Son, et al., “Tuning storeoperated calcium entry to modulate Ca2+-dependent physiological processes,” Biochim. Biophys. Acta Mol. Cell Res., 1866, No. 7, 1037−1045 (2018); doi: https://doi.org/10.1016/j.bbamcr.2018.11.018.

Article  CAS  PubMed  Google Scholar 

M. M. Wu, J. Buchanan, R. M. Luik, and R. S. Lewis, “Ca2+ store depletion causes STIM1 to accumulate in ER regions closely associated with the plasma membrane,” J. Cell Biol., 174, No. 6, 803−813 (2006); doi: https://doi.org/10.1083/jcb.200604014.

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Liou, M. Fivaz, T. Inoue, and T. Meyer, “Live-cell imaging reveals sequential oligomerization and local plasma membrane targeting of stromal interaction molecule 1 after Ca2+ store depletion,” Proc. Natl. Acad. Sci. USA, 104, No. 22, 9301−9306 (2007); doi: https://doi.org/10.1073/pnas.0702866104.

Article  CAS  PubMed  PubMed Central  Google Scholar 

J. Suzuki, K. Kanemaru, K. Ishii, et al., “Imaging intraorganellar Ca2+ at subcellular resolution using CEPIA,” Nat. Commun., 5, 4153 (2014); doi: https://doi.org/10.1038/ncomms5153.

Article  CAS  PubMed  Google Scholar 

A. Baba, T. Yasui, S. Fujisawa, et al., “Activity-evoked capacitative Ca2+ entry: implications in synaptic plasticity,” J. Neurosci., 23, No. 21, 7737−7741 (2003); doi: https://doi.org/10.1523/JNEUROSCI.23-21-07737.2003.

Article  CAS  PubMed  PubMed Central  Google Scholar 

I. Zhang and H. Hu, “Store-operated calcium channels in physiological and pathological states of the nervous system,” Front. Cell. Neurosci., 14, 600758 (2020); doi: https://doi.org/10.3389/fncel.2020.600758.

Article  CAS  PubMed  PubMed Central  Google Scholar 

B. Lu and M. Fivaz, “Neuronal SOCE: myth or reality?,” Trends Cell Biol., 26, No. 12, 890−893 (2016); doi: https://doi.org/10.1016/j.tcb.2016.09.008.

Article  CAS  PubMed  Google Scholar 

E. Korkotian, E. Oni-Biton, and M. Segal, “The role of the store-operated calcium entry channel Orai1 in cultured rat hippocampal synapse formation and plasticity,” J. Physiol., 595, No. 1, 125−140 (2017); doi: https://doi.org/10.1113/JP272645.

Article  CAS  PubMed  Google Scholar 

R. Kraft, “STIM and ORAI proteins in the nervous system”, Channels (Austin), 9, No. 5, 245−252 (2015); doi: https://doi.org/10.1080/19336950.2015.1071747.

Article  PubMed  Google Scholar 

L. Majewski, F. Maciag, P. M. Boguszewski, et al., “Overexpression of STIM1 in neurons in mouse brain improves contextual learning and impairs longterm depression,” Biochim. Biophys. Acta Mol. Cell Res., 1864, No. 6, 1071−1087 (2017); doi: https://doi.org/10.1016/j.bbamcr.2016.11.025.

Article  CAS  PubMed  Google Scholar 

A. Secondo, G. Bagetta, and D. Amantea, “On the role of store-operated calcium entry in acute and chronic neurodegenerative diseases,” Front. Mol. Neurosci., 11, 87 (2018); doi: https://doi.org/10.3389/fnmol.2018.00087.

Article  CAS  PubMed  PubMed Central  Google Scholar 

E. È. Saftenku, “Computational study of nonhomogeneous distribution of Ca2+ handling systems in cerebellar granule cells,” J. Theor. Biol., 257, No. 2, 228−244 (2009); doi: https://doi.org/10.1016/j.jtbi.2008.12.002.

Article  CAS  PubMed  Google Scholar 

E. È. Saftenku, “Effects of calretinin on Ca2+ signals in cerebellar granule cells: implications of cooperative Ca2+ binding,” Cerebellum, 11, No. 1, 102−120 (2012); doi: https://doi.org/10.1007/s12311-011-0263-4.

Article  CAS  PubMed  Google Scholar 

M. L. Hines and N. T. Carnevale, “The NEURON simulation environment”, Neural Comp., 9, No. 6, 1179−1209 (1997); doi: https://doi.org/10.1162/neco.1997.9.6.1179.

Article  CAS  Google Scholar 

D. Gall, F. Prestori, E. Sola, et al., “Intracellular calcium regulation by burst discharge determines bidirectional long-term synaptic plasticity at the cerebellum input stage,” J. Neurosci., 25, No. 19, 4813–4822 (2005); doi: https://doi.org/10.1523/JNEUROSCI.0410-05.2005.

Article  CAS  PubMed  PubMed Central  Google Scholar 

F. Helmchen and D. W. Tank, “A single-compartment model of calcium dynamics in nerve terminals and dendrites,” Cold Spring Harb. Protoc., Issue 2, 155−167 (2015); doi: https://doi.org/10.1101/pdb.top085910.

O. Garschuk, Y. Yaari, and A. Konnerth, “Release and sequestration of calcium by ryanodine-sensitive stores in rat hippocampal neurons,” J. Physiol., 502 (Pt. 1),13−30 (1997); doi: https://doi.org/10.1111/j.1469-7793.1997.013bl.x.

Article  Google Scholar 

H. Tidow, L. R. Poulsen, A. Andreeva, et al., “A bimodular mechanism of calcium control in eukaryotes,” Nature, 491, No. 7424, 468−472 (2012); doi: https://doi.org/10.1038/nature11539.

Article  CAS  PubMed  Google Scholar 

M. A. Albrecht, S. L. Colegrove, and D. D. Friel, “Differential regulation of ER Ca2+ uptake and release rates accounts for multiple modes of Ca2+-induced Ca2+ release,” J. Gen. Physiol., 119, No. 3, 211–233 (2002); doi: https://doi.org/10.1085/jgp.20028484.

Article  CAS  PubMed  PubMed Central  Google Scholar 

H. Croisier, X. Tan, J. F. Perez-Zoghbi, et al., “Activation of store-operated calcium entry in airway smooth muscle cells: insight from a mathematical model,” PLoS One, 8, No. 8, e69598 (2013); doi: https://doi.org/10.1371/journal.pone.0069598.

Article  CAS  Google Scholar 

T. Akita and K. Kuba, “Ca2+-dependent inactivation of Ca2+-induced Ca2+ release in bullfrog sympathetic neurons,” J. Physiol., 586, No. 14, 3365−3384 (2008); doi: https://doi.org/10.1113/jphysiol.2008.153833.

Article  CAS  PubMed  PubMed Central  Google Scholar 

E. A. Sobie, K. W. Dilly, J. dos Santos Cruz, et al., “Termination of cardiac Ca2+ sparks: an investigative mathematical model of calcium-induced calcium release,” Biophys. J., 83, No. 1, 59−78 (2002); doi: https://doi.org/10.1016/s0006-3495(02)75149-7.

N. Solovyova, N. Veselovsky, E. C. Toescu, et al., “Ca2+ dynamics in the lumen of the endoplasmic reticulum in sensory neurons: direct visualization of Ca2+-induced Ca2+ release triggered by physiological Ca2+ entry,” EMBO J., 21, No. 4, 622−630 (2002); doi: https://doi.org/10.1093/emboj/21.4.622.

Article  CAS  PubMed  PubMed Central  Google Scholar 

K. Singaravelu, C. Lohr, and J. W. Deitmer, “Calciumindependent phospholipase A2 mediates storeoperated calcium entry in rat cerebellar granule cells,” Cerebellum, 7, No. 3, 467−481 (2008); doi: https://doi.org/10.1007/s12311-008-0050-z.

Article  CAS  PubMed  Google Scholar 

B. M. Hagen, L. Boyman, J. P. Kao, and W. J. Lederer, “A comparative assessment of fluo Ca2+ indicators in rat ventricular myocytes,” Cell Calcium, 52, No. 2, 170−181 (2012); doi: https://doi.org/10.1016/j.ceca.2012.05.010.

Article  CAS  PubMed  PubMed Central  Google Scholar 

N. Shirokova, J. Garcia, G. Pizarro, and E. Rios, “Ca2+ release from the sarcoplasmic reticulum compared in amphibian and mammalian skeletal muscle,” J. Gen. Physiol., 107, No. 1, 1−18 (1996); doi: https://doi.org/10.1085/jgp.107.1.1.

Article  CAS  PubMed  Google Scholar 

P. G. Hogan and A. Rao, “Store-operated calcium entry: mechanisms and modulation,” Biochem. Biophys. Res. Commun., 460, No. 1, 40−49 (2015); doi: https://doi.org/10.1016/j.bbrc.2015.02.110.

Article  CAS 

留言 (0)

沒有登入
gif