Synthetic routes to theranostic applications of carbon-based quantum dots

U. Abd Rani, L.Y. Ng, C.Y. Ng, E. Mahmoudi. A review of carbon quantum dots and their applications in wastewater treatment. Advances in Colloid and Interface Science 278 (2020) 102124. https://doi.org/10.1016/j.cis.2020.102124.

K. Brindhadevi, H.A. Garalleh, A. Alalawi, E. Al-Sarayreh, A. Pugazhendhi. Carbon nanomaterials: Types, synthesis strategies and their application as drug delivery system for cancer therapy. Biochemical Engineering Journal 192 (2023) 108828. https://doi.org/10.1016/j.bej.2023.108828.

F. Barati, M. Avatefi, N.B. Moghadam, S. Asghari, E. Ekrami, M. Mahmoudifard. A review of graphene quantum dots and their potential biomedical applications. Journal of Biomaterials Applications 37 (2023) 1137-1158. https://doi.org/10.1177/08853282221125311.

A. Sharma, J. Das. Small molecules derived carbon dots: synthesis and applications in sensing, catalysis, imaging, and biomedicine. Journal of Nanobiotechnology 17 (2019) 1-24. https://doi.org/10.1186/s12951-019-0525-8.

P. Sharmiladevi, N. Akhtar, V. Haribabu, K. Girigoswami, S. Chattopadhyay, A. Girigoswami. Excitation wavelength independent carbon-decorated ferrite nanodots for multimodal diagnosis and stimuli responsive therapy. ACS Applied Bio Materials 2 (2019) 1634-1642. https://doi.org/10.1021/¬acsabm.9b00039.

B. Das, A. Girigoswami, A. Dutta, P. Pal, J. Dutta, P. Dadhich, P.K. Srivas, S. Dhara. Carbon nanodots doped super-paramagnetic iron oxide nanoparticles for multimodal bioimaging and osteochondral tissue regeneration via external magnetic actuation. ACS biomaterials Science & engineering 5 (2019) 3549-3560. https://doi.org/10.1021/acsbiomaterials.9b00571.

B. Das, A. Girigoswami, P. Pal, S. Dhara. Manganese oxide-carbon quantum dots nano-composites for fluorescence/magnetic resonance (T1) dual mode bioimaging, long term cell tracking, and ros scavenging. Materials Science and Engineering: C 102 (2019) 427-436. https://doi.org/10.1016/j.-msec.¬2019.04.077.

S. Cailotto, M. Negrato, S. Daniele, R. Luque, M. Selva, E. Amadio, A. Perosa. Carbon dots as photocatalysts for organic synthesis: metal-free methylene–oxygen-bond photocleavage. Green Chemistry 22 (2020) 1145-1149. https://doi.org/10.1039/C9GC03811F.

P. Gowtham, V. Haribabu, A.D. Prabhu, P. Pallavi, K. Girigoswami, A. Girigoswami. Impact of nanovectors in multimodal medical imaging. Nanomedicine Journal 9 (2022) 107-130. https://doi.org/10.22038/NMJ.2022.63459.1664.

P. Pallavi, P. Sharmiladevi, V. Haribabu, K. Girigoswami, A. Girigoswami. A Nano Approach to Formulate Photosensitizers for Photodynamic Therapy. Current Nanoscience 18 (2022) 675-689. https://doi.org/10.2174/1573413718666211222162041.

S.F. Völker, S. Uemura, M. Limpinsel, M. Mingebach, C. Deibel, V. Dyakonov, C. Lambert. Polymeric squaraine dyes as electron donors in bulk heterojunction solar cells. Macromolecular Chemistry and Physics 211 (2010) 1098-1108. https://doi.org/10.1002/macp.200900670.

P. Sharmiladevi, K. Girigoswami, V. Haribabu, A. Girigoswami. Nano-enabled theranostics for cancer. Materials Advances 2 (2021) 2876-2891. https://doi.org/10.1039/D1MA00069A.

Y. Song, S. Zhu, S. Zhang, Y. Fu, L. Wang, X. Zhao, B. Yang. Investigation from chemical structure to photoluminescent mechanism: a type of carbon dots from the pyrolysis of citric acid and an amine. Journal of Materials Chemistry C 3 (2015) 5976-5984. https://doi.org/10.1039/C5TC00813A.

J. Zhou, Y. Yang, C.-y. Zhang. A low-temperature solid-phase method to synthesize highly fluorescent carbon nitride dots with tunable emission. Chemical Communications 49 (2013) 8605-8607. https://doi.org/10.1039/C3CC42266F.

J. Zhou, C. Booker, R. Li, X. Zhou, T.-K. Sham, X. Sun, Z. Ding. An electrochemical avenue to blue luminescent nanocrystals from multiwalled carbon nanotubes (MWCNTs). Journal of the American Chemical Society 129 (2007) 744-745. https://doi.org/10.1021/ja0669070.

D. Reyes-Contreras, M. Camacho-López, M.A. Camacho-López, S. Camacho-López, R.I. Rodríguez-Beltrán, M. Mayorga-Rojas. Influence of the per pulse laser fluence on the optical properties of carbon nanoparticles synthesized by laser ablation of solids in liquids. Optics & Laser Technology 74 (2015) 48-52. https://doi.org/10.1016/j.optlastec.2015.05.010.

Q. Zeng, D. Shao, X. He, Z. Ren, W. Ji, C. Shan, S. Qu, J. Li, L. Chen, Q. Li. Carbon dots as a trackable drug delivery carrier for localized cancer therapy in vivo. Journal of Materials Chemistry B 4 (2016) 5119-5126. https://doi.org/10.1039/C6TB01259K.

J. Deng, Q. Lu, N. Mi, H. Li, M. Liu, M. Xu, L. Tan, Q. Xie, Y. Zhang, S. Yao. Electrochemical synthesis of carbon nanodots directly from alcohols. Chemistry–A European Journal 20 (2014) 4993-4999. https://doi.org/10.1002/chem.201304869.

Q. An, Q. Lin, X. Huang, R. Zhou, X. Guo, W. Xu, S. Wang, D. Xu, H.-T. Chang. Electrochemical synthesis of carbon dots with a Stokes shift of 309 nm for sensing of Fe3+ and ascorbic acid. Dyes and Pigments 185 (2021) 108878. https://doi.org/10.1016/j.dyepig.2020.108878.

S. Ray, A. Saha, N.R. Jana, R. Sarkar. Fluorescent carbon nanoparticles: synthesis, characterization, and bioimaging application. The Journal of Physical Chemistry C 113 (2009) 18546-18551. https://doi.org/10.1021/jp905912n.

Q.-L. Zhao, Z.-L. Zhang, B.-H. Huang, J. Peng, M. Zhang, D.-W. Pang. Facile preparation of low cytotoxicity fluorescent carbon nanocrystals by electrooxidation of graphite. Chemical Communications (2008) 5116-5118. https://doi.org/10.1039/B812420E.

M. Liu, Y. Xu, F. Niu, J.J. Gooding, J. Liu. Carbon quantum dots directly generated from electrochemical oxidation of graphite electrodes in alkaline alcohols and the applications for specific ferric ion detection and cell imaging. Analyst 141 (2016) 2657-2664. https://doi.org/10.1039/C5AN02231B.

F. Niu, Y.-L. Ying, X. Hua, Y. Niu, Y. Xu, Y.-T. Long. Electrochemically generated green-fluorescent N-doped carbon quantum dots for facile monitoring alkaline phosphatase activity based on the Fe3+-mediating ON-OFF-ON-OFF fluorescence principle. Carbon 127 (2018) 340-348. https://doi.org/¬10.1016/j.carbon.2017.10.097.

H. Zeng, X.W. Du, S.C. Singh, S.A. Kulinich, S. Yang, J. He, W. Cai. Nanomaterials via laser ablation/irradiation in liquid: a review. Advanced Functional Materials 22 (2012) 1333-1353. https://doi.org/10.1002/adfm.201102295.

V. Gardette, V. Motto-Ros, C. Alvarez-Llamas, L. Sancey, L. Duponchel, B. Busser. Laser-induced breakdown spectroscopy imaging for material and biomedical applications: recent advances and future perspectives. Analytical Chemistry 95 (2023) 49-69. https://doi.org/10.1021/acs.anal-chem.2c04910.

R.M. Altuwirqi. Graphene Nanostructures by Pulsed Laser Ablation in Liquids: A Review. Materials 15 (2022) 5925. https://doi.org/10.3390/ma15175925.

N. Semaltianos. Nanoparticles by laser ablation. Critical Reviews in Solid State and Materials Sciences 35 (2010) 105-124. https://doi.org/10.1080/10408431003788233.

A. Kaczmarek, J. Hoffman, J. Morgiel, T. Mościcki, L. Stobiński, Z. Szymański, A. Małolepszy. Luminescent carbon dots synthesized by the laser ablation of graphite in polyethylenimine and ethylenediamine. Materials 14 (2021) 729. https://doi.org/10.3390/ma14040729.

D. Reyes, M. Camacho, M. Camacho, M. Mayorga, D. Weathers, G. Salamo, Z. Wang, A. Neogi. Laser ablated carbon nanodots for light emission. Nanoscale research letters 11 (2016) 1-11. https://doi.org/10.1186/s11671-016-1638-8.

V. Nguyen, L. Yan, J. Si, X. Hou. Femtosecond laser-induced size reduction of carbon nanodots in solution: Effect of laser fluence, spot size, and irradiation time. Journal of Applied Physics 117 (2015) 084304. https://doi.org/10.1063/1.4909506.

H. Yu, X. Li, X. Zeng, Y. Lu. Preparation of carbon dots by non-focusing pulsed laser irradiation in toluene. Chemical Communications 52 (2015) 819-822. https://doi.org/10.1039/C5CC08384B.

V.S. Sutkar, A.V. Mahulkar, A.B. Pandit, Efficiency assessment and mapping of cavitational activities in sonochemical reactors, in Energy Aspects of Acoustic Cavitation and Sonochemistry, Elsevier2022, p. 157-183. https://doi.org/10.1016/B978-0-323-91937-1.00015-3.

V.B. Kumar, Z.e. Porat, A. Gedanken. Facile one-step sonochemical synthesis of ultrafine and stable fluorescent C-dots. Ultrasonics Sonochemistry 28 (2016) 367-375. https://doi.org/10.1016/j.ult¬sonch.¬2015.08.005.

K. Dehvari, K.Y. Liu, P.-J. Tseng, G. Gedda, W.M. Girma, J.-Y. Chang. Sonochemical-assisted green synthesis of nitrogen-doped carbon dots from crab shell as targeted nanoprobes for cell imaging. Journal of the Taiwan Institute of Chemical Engineers 95 (2019) 495-503. https://doi.org/10.1016/-j.jtice.2018.08.037.

H. Li, X. He, Y. Liu, H. Huang, S. Lian, S.-T. Lee, Z. Kang. One-step ultrasonic synthesis of water-soluble carbon nanoparticles with excellent photoluminescent properties. Carbon 49 (2011) 605-609. https://doi.org/10.1016/j.carbon.2010.10.004.

Z. Wang, Q. Cheng, X. Wang, J. Li, W. Li, Y. Li, G. Zhang. Carbon dots modified bismuth antimonate for broad spectrum photocatalytic degradation of organic pollutants: Boosted charge separation, DFT calculations and mechanism unveiling. Chemical Engineering Journal 418 (2021) 129460. https://doi.org/10.1016/j.cej.2021.129460.

Y.-S. Lin, Y. Lin, A.P. Periasamy, J. Cang, H.-T. Chang. Parameters affecting the synthesis of carbon dots for quantitation of copper ions. Nanoscale Advances 1 (2019) 2553-2561. https://doi.org/-10.1039/C9NA00137A.

F. Niu, Y. Xu, M. Liu, J. Sun, P. Guo, J. Liu. Bottom-up electrochemical preparation of solid-state carbon nanodots directly from nitriles/ionic liquids using carbon-free electrodes and the applications in specific ferric ion detection and cell imaging. Nanoscale 8 (2016) 5470-5477. https://doi.org/¬10.1039/C6NR00023A.

Y. Hou, Q. Lu, J. Deng, H. Li, Y. Zhang. One-pot electrochemical synthesis of functionalized fluorescent carbon dots and their selective sensing for mercury ion. Analytica Chimica Acta 866 (2015) 69-74. https://doi.org/10.1016/j.aca.2015.01.039.

S. Hu, J. Liu, J. Yang, Y. Wang, S. Cao. Laser synthesis and size tailor of carbon quantum dots. Journal of Nanoparticle Research 13 (2011) 7247-7252. https://doi.org/10.1007/s11051-011-0638-y.

F. Wang, S. Wang, Z. Sun, H. Zhu. Study on ultrasonic single-step synthesis and optical properties of nitrogen-doped carbon fluorescent quantum dots. Fullerenes, Nanotubes and Carbon Nanostructures 23 (2015) 769-776. https://doi.org/10.1080/1536383X.2014.996287.

C. Li, X. Sun, Y. Li, H. Liu, B. Long, D. Xie, J. Chen, K. Wang. Rapid and green fabrication of carbon dots for cellular imaging and anti-counterfeiting applications. ACS omega 6 (2021) 3232-3237. https://doi.org/¬10.1021/acsomega.0c05682.

F. Sun, H. Ghosh, Z. Tan, S. Sivoththaman. Top-down synthesis and enhancing device adaptability of graphene quantum dots. Nanotechnology 34 (2023) 185601. https://doi.org/10.1088/1361-6528/acb7fb.

T.V. de Medeiros, J. Manioudakis, F. Noun, J.-R. Macairan, F. Victoria, R. Naccache. Microwave-assisted synthesis of carbon dots and their applications. Journal of Materials Chemistry C 7 (2019) 7175-7195. https://doi.org/10.1039/C9TC01640F.

S. Faraji, F.N. Ani. Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors–a review. Journal of Power Sources 263 (2014) 338-360. https://doi.org/10.1016/j.jpowsour.2014.03.144.

C. López, M. Zougagh, M. Algarra, E. Rodríguez-Castellón, B. Campos, J.E. Da Silva, J. Jiménez-Jiménez, A. Ríos. Microwave-assisted synthesis of carbon dots and its potential as analysis of four heterocyclic aromatic amines. Talanta 132 (2015) 845-850. https://doi.org/10.1016/j.talanta.2014.10.008.

C. Zhao, X. Li, C. Cheng, Y. Yang. Green and microwave-assisted synthesis of carbon dots and application for visual detection of cobalt (II) ions and pH sensing. Microchemical Journal 147 (2019) 183-190. https://doi.org/10.1016/j.microc.2019.03.029.

Y. Xu, H. Li, B. Wang, H. Liu, L. Zhao, T. Zhou, M. Liu, N. Huang, Y. Li, L. Ding. Microwave-assisted synthesis of carbon dots for" turn-on" fluorometric determination of Hg (II) via aggregation-induced emission. Microchimica Acta 185 (2018) 1-7. https://doi.org/10.1007/s00604-018-2781-y.

R. Ludmerczki, S. Mura, C.M. Carbonaro, I.M. Mandity, M. Carraro, N. Senes, S. Garroni, G. Granozzi, L. Calvillo, S. Marras. Carbon dots from citric acid and its intermediates formed by thermal decomposition. Chemistry–A European Journal 25 (2019) 11963-11974. https://doi.org/10.1002/¬chem.201902497.

N. Wang, S. Koh, B.G. Jeong, D. Lee, W.D. Kim, K. Park, M.K. Nam, K. Lee, Y. Kim, B.-H. Lee. Highly luminescent silica-coated CdS/CdSe/CdS nanoparticles with strong chemical robustness and excellent thermal stability. Nanotechnology 28 (2017) 185603. https://doi.org/10.1088/1361-6528/aa6828.

L. Shi, J.H. Yang, H.B. Zeng, Y.M. Chen, S.C. Yang, C. Wu, H. Zeng, O. Yoshihito, Q. Zhang. Carbon dots with high fluorescence quantum yield: the fluorescence originates from organic fluorophores. Nanoscale 8 (2016) 14374-14378. https://doi.org/10.1039/C6NR00451B.

H. Lin, J. Huang, L. Ding. Preparation of carbon dots with high-fluorescence quantum yield and their application in dopamine fluorescence probe and cellular imaging. Journal of Nanomaterials 2019 (2019). https://doi.org/10.1155/2019/5037243.

J. Qin, L. Zhang, R. Yang. Powder carbonization to synthesize novel carbon dots derived from uric acid for the detection of Ag (I) and glutathione. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 207 (2019) 54-60. https://doi.org/10.1016/j.saa.2018.08.066.

J. Wang, J. Wei, S. Su, J. Qiu. Novel fluorescence resonance energy transfer optical sensors for vitamin B 12 detection using thermally reduced carbon dots. New Journal of Chemistry 39 (2015) 501-507. https://doi.org/10.1039/C4NJ00538D

C.a. Ma, C. Yin, Y. Fan, X. Yang, X. Zhou. Highly efficient synthesis of N-doped carbon dots with excellent stability through pyrolysis method. Journal of Materials Science 54 (2019) 9372-9384. https://doi.org/10.1007/s10853-019-03585-7.

V. Rimal, S. Shishodia, P. Srivastava. Novel synthesis of high-thermal stability carbon dots and nanocomposites from oleic acid as an organic substrate. Applied Nanoscience 10 (2020) 455-464. https://doi.org/10.1007/s13204-019-01178-z.

C.-W. Lai, Y.-H. Hsiao, Y.-K. Peng, P.-T. Chou. Facile synthesis of highly emissive carbon dots from pyrolysis of glycerol; gram scale production of carbon dots/mSiO 2 for cell imaging and drug release. Journal of Materials Chemistry 22 (2012) 14403-14409. https://doi.org/10.1039/C2JM32206D.

W. Tang, B. Wang, J. Li, Y. Li, Y. Zhang, H. Quan, Z. Huang. Facile pyrolysis synthesis of ionic liquid capped carbon dots and subsequent application as the water-based lubricant additives. Journal of Materials Science 54 (2019) 1171-1183. https://doi.org/10.1007/s10853-018-2877-0.

T.-N. Pham-Truong, T. Petenzi, C. Ranjan, H. Randriamahazaka, J. Ghilane. Microwave assisted synthesis of carbon dots in ionic liquid as metal free catalyst for highly selective production of hydrogen peroxide. Carbon 130 (2018) 544-552. https://doi.org/10.1016/j.carbon.2018.01.070.

M.P. Romero, F. Alves, M.D. Stringasci, H.H. Buzzá, H. Ciol, N.M. Inada, V.S. Bagnato. One-pot microwave-assisted synthesis of carbon dots and in vivo and in vitro antimicrobial photodynamic applications. Frontiers in Microbiology 12 (2021) 1455. https://doi.org/10.3389/fmicb.2021.662149.

M. Zheng, Z. Xie, D. Qu, D. Li, P. Du, X. Jing, Z. Sun. On–off–on fluorescent carbon dot nanosensor for recognition of chromium (VI) and ascorbic acid based on the inner filter effect. ACS applied materials & interfaces 5 (2013) 13242-13247. https://doi.org/10.1021/am4042355.

J. Hou, W. Wang, T. Zhou, B. Wang, H. Li, L. Ding. Synthesis and formation mechanistic investigation of nitrogen-doped carbon dots with high quantum yields and yellowish-green fluorescence. Nanoscale 8 (2016) 11185-11193. https://doi.org/10.1039/C6NR02701F.

F. Wang, Z. Xie, H. Zhang, C.y. Liu, Y.g. Zhang. Highly luminescent organosilane‐functionalized carbon dots. Advanced Functional Materials 21 (2011) 1027-1031. https://doi.org/10.1002/adfm.20100¬2279.

Y. Xu, M. Wu, Y. Liu, X.Z. Feng, X.B. Yin, X.W. He, Y.K. Zhang. Nitrogen‐doped carbon dots: a facile and general preparation method, photoluminescence investigation, and imaging applications. Chemistry–A European Journal 19 (2013) 2276-2283. https://doi.org/10.1002/chem.201203641.

X.-M. Wei, Y. Xu, Y.-H. Li, X.-B. Yin, X.-W. He. Ultrafast synthesis of nitrogen-doped carbon dots via neutralization heat for bioimaging and sensing applications. RSC advances 4 (2014) 44504-44508. https://doi.org/10.1039/C4RA08523J.

X.W. Tan, A.N.B. Romainor, S.F. Chin, S.M. Ng. Carbon dots production via pyrolysis of sago waste as potential probe for metal ions sensing. Journal of Analytical and Applied Pyrolysis 105 (2014) 157-165. https://doi.org/10.1016/j.jaap.2013.11.001.

C.S. Stan, C. Albu, A. Coroaba, M. Popa, D. Sutiman. One step synthesis of fluorescent carbon dots through pyrolysis of N-hydroxysuccinimide. Journal of Materials Chemistry C 3 (2015) 789-795. https://doi.org/10.1039/C4TC02382J.

L. Stan, I. Volf, C.S. Stan, C. Albu, A. Coroaba, L.E. Ursu, M. Popa. Intense Blue Photo Emissive Carbon Dots Prepared through Pyrolytic Processing of Ligno-Cellulosic Wastes. Nanomaterials 13 (2023) 131. https://doi.org/10.3390/nano13010131.

X. Wang, J. Zhuang, Q. Peng, Y. Li. A general strategy for nanocrystal synthesis. Nature 437 (2005) 121-124. https://doi.org/10.1038/nature03968.

G. Ischia, M. Cutillo, G. Guella, N. Bazzanella, M. Cazzanelli, M. Orlandi, A. Miotello, L. Fiori. Hydrothermal carbonization of glucose: Secondary char properties, reaction pathways, and kinetics. Chemical Engineering Journal 449 (2022) 137827. https://doi.org/10.1016/j.cej.2022.137827.

T. Ghosh, R. Sahoo, S.K. Ghosh, P. Banerji, N.C. Das. Simplistic hydrothermal synthesis approach for fabricating photoluminescent carbon dots and its potential application as an efficient sensor probe for toxic lead (II) ion detection. Frontiers of Chemical Science and Engineering (2023) 1-12. https://doi.org/10.1007/s11705-022-2239-y.

H. Hayashi, Y. Hakuta. Hydrothermal synthesis of metal oxide nanoparticles in supercritical water. Materials 3 (2010) 3794-3817. https://doi.org/10.3390/ma3073794.

T. Adschiri, Y. Hakuta, K. Sue, K. Arai. Hydrothermal synthesis of metal oxide nanoparticles at supercritical conditions. Journal of Nanoparticle Research 3 (2001) 227-235. https://doi.org/-10.1023/A:1017541705569.

S.-H. Feng, G.-H. Li, Hydrothermal and solvothermal syntheses, in Modern inorganic synthetic chemistry, Elsevier2017, p. 73-104. https://doi.org/10.1016/B978-0-444-63591-4.00004-5.

V. Haribabu, K. Girigoswami, P. Sharmiladevi, A. Girigoswami. Water–Nanomaterial Interaction to Escalate Twin-Mode Magnetic Resonance Imaging. ACS Biomaterials Science & Engineering 6 (2020) 4377-4389. https://doi.org/10.1021/acsbiomaterials.0c00409.

C. Olla, A. Cappai, S. Porcu, L. Stagi, M. Fantauzzi, M.F. Casula, F. Mocci, R. Corpino, D. Chiriu, P.C. Ricci. Exploring the Impact of Nitrogen Doping on the Optical Properties of Carbon Dots Synthesized from Citric Acid. Nanomaterials 13 (2023) 1344. https://doi.org/10.3390/nano13081344.

X. Yao, Y. Wang, F. Li, J.J. Dalluge, G. Orr, R. Hernandez, Q. Cui, C.L. Haynes. Unconventional aliphatic fluorophores discovered as the luminescence origin in citric acid–urea carbon dots. Nanoscale 14 (2022) 9516-9525. https://doi.org/10.1039/D2NR02361J.

J. Schneider, C.J. Reckmeier, Y. Xiong, M. von Seckendorff, A.S. Susha, P. Kasák, A.L. Rogach. Molecular fluorescence in citric acid-based carbon dots. The Journal of Physical Chemistry C 121 (2017) 2014-2022. https://doi.org/10.1021/acs.jpcc.6b12519.

Y. Wang, A. Hu. Carbon quantum dots: synthesis, properties and applications. Journal of Materials Chemistry C 2 (2014) 6921-6939. https://doi.org/10.1039/C4TC00988F.

N.M. Zholobak, A.L. Popov, A.B. Shcherbakov, N.R. Popova, M.M. Guzyk, V.P. Antonovich, A.V. Yegorova, Y.V. Scrypynets, I.I. Leonenko, A.Y. Baranchikov. Facile fabrication of luminescent organic dots by thermolysis of citric acid in urea melt, and their use for cell staining and polyelectrolyte microcapsule labelling. Beilstein journal of nanotechnology 7 (2016) 1905-1917. https://doi.org/¬10.3762/bjnano.7.182.

W. Kasprzyk, S. Bednarz, P. Żmudzki, M. Galica, D. Bogdał. Novel efficient fluorophores synthesized from citric acid. RSC advances 5 (2015) 34795-34799. https://doi.org/10.1039/C5RA03226A.

W. Kasprzyk, T. Świergosz, S. Bednarz, K. Walas, N.V. Bashmakova, D. Bogdał. Luminescence phenomena of carbon dots derived from citric acid and urea–a molecular insight. Nanoscale 10 (2018) 13889-13894. https://doi.org/10.1039/C8NR03602K.

J. Liu, S. Lu, Q. Tang, K. Zhang, W. Yu, H. Sun, B. Yang. One-step hydrothermal synthesis of photoluminescent carbon nanodots with selective antibacterial activity against Porphyromonas gingivalis. Nanoscale 9 (2017) 7135-7142. https://doi.org/10.1039/C7NR02128C.

B. Wang, H. Tan, T. Zhang, W. Duan, Y. Zhu. Hydrothermal synthesis of N-doped carbon dots from an ethanolamine–ionic liquid gel to construct label-free multifunctional fluorescent probes for Hg 2+, Cu 2+ and S 2 O 3 2−. Analyst 144 (2019) 3013-3022. https://doi.org/10.1039/C9AN00116F.

J.-Y. Li, Y. Liu, Q.-W. Shu, J.-M. Liang, F. Zhang, X.-P. Chen, X.-Y. Deng, M.T. Swihart, K.-J. Tan. One-pot hydrothermal synthesis of carbon dots with efficient up-and down-converted photoluminescence for the sensitive detection of morin in a dual-readout assay. Langmuir 33 (2017) 1043-1050. https://doi.org/10.1021/acs.langmuir.6b04225.

L. Lin, Y. Wang, Y. Xiao, W. Liu. Hydrothermal synthesis of carbon dots codoped with nitrogen and phosphorus as a turn-on fluorescent probe for cadmium (II). Microchimica Acta 186 (2019) 1-7. https://doi.org/10.1007/s00604-019-3264-5.

Z. Wang, B. Fu, S. Zou, B. Duan, C. Chang, B. Yang, X. Zhou, L. Zhang. Facile construction of carbon dots via acid catalytic hydrothermal method and their application for target imaging of cancer cells. Nano Research 9 (2016) 214-223. https://doi.org/10.1007/s12274-016-0992-2.

S. Liu, J. Cui, J. Huang, B. Tian, F. Jia, Z. Wang. Facile one-pot synthesis of highly fluorescent nitrogen-doped carbon dots by mild hydrothermal method and their applications in detection of Cr (VI) ions. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 206 (2019) 65-71. https://doi.org/10.1016/j.saa.2018.07.082.

H. Lin, L. Ding, B. Zhang, J. Huang. Detection of nitrite based on fluorescent carbon dots by the hydrothermal method with folic acid. Royal Society Open Science 5 (2018) 172149. https://doi.org/10.1098/rsos.172149.

S. Wang, S.-H. Wu, W.-L. Fang, X.-F. Guo, H. Wang. Synthesis of non-doped and non-modified carbon dots with high quantum yield and crystallinity by one-pot hydrothermal method using a single carbon source and used for ClO− detection. Dyes and Pigments 164 (2019) 7-13. https://doi.org/¬10.1016/j.dyepig.2019.01.004.

R. Atchudan, T.N.J.I. Edison, M. Shanmugam, S. Perumal, T. Somanathan, Y.R. Lee. Sustainable synthesis of carbon quantum dots from banana peel waste using hydrothermal process for in vivo bioimaging. Physica E: Low-dimensional Systems and Nanostructures 126 (2021) 114417. https://doi.org/10.1016/j.physe.2020.114417.

R. Atchudan, T.N. Jebakumar Immanuel Edison, S. Perumal, Y.R. Lee. Indian gooseberry-derived tunable fluorescent carbon dots as a promise for in vitro/in vivo multicolor bioimaging and fluorescent ink. ACS omega 3 (2018) 17590-17601. https://doi.org/10.1021/acsomega.8b02463.

H. Lee, Y.-C. Su, H.-H. Tang, Y.-S. Lee, J.-Y. Lee, C.-C. Hu, T.-C. Chiu. One-pot hydrothermal synthesis of carbon dots as fluorescent probes for the determination of mercuric and hypochlorite ions. Nanomaterials 11 (2021) 1831. https://doi.org/10.3390/nano11071831.

T.-Y. Shen, P.-Y. Jia, D.-S. Chen, L.-N. Wang. Hydrothermal synthesis of N-doped carbon quantum dots and their application in ion-detection and cell-imaging. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 248 (2021) 119282. https://doi.org/10.1016/j.saa.2020.119282.

Y. Tu, S. Wang, X. Yuan, Y. Xiang, K. Qin, Y. Wei, Q. Zhang, X. Chen, X. Ji. Facile hydrothermal synthesis of nitrogen, phosphorus-doped fluorescent carbon dots for live/dead bacterial differentiation, cell imaging and two nitrophenols detection. Dyes and Pigments 184 (2021) 108761. https://doi.org/10.1016/j.dyepig.2020.108761.

J. Zhang, S.S. Zhao, Z. Yang, Z. Yang, S. Yang, X. Liu. Hydrothermal synthesis of blue‐green emitting carbon dots based on the liquid products of biodegradation of coal. International Journal of Energy Research 45 (2021) 9396-9407. https://doi.org/10.1002/er.6468.

J. Luo, Z. Sun, W. Zhou, F. Mo, Z.-c. Wu, X. Zhang. Hydrothermal synthesis of bright blue-emitting carbon dots for bioimaging and fluorescent determination of baicalein. Optical Materials 113 (2021) 110796. https://doi.org/10.1016/j.optmat.2020.110796.

S. Marouzi, M. Darroudi, A. Hekmat, K. Sadri, R.K. Oskuee. One-pot hydrothermal synthesis of carbon quantum dots from Salvia hispanica L. seeds and investigation of their biodistribution, and cytotoxicity effects. Journal of Environmental Chemical Engineering 9 (2021) 105461. https://doi.org/¬10.1016/j.jece.2021.105461.

P. Mohammad-Jafarieh, A. Akbarzadeh, R. Salamat-Ahangari, M. Pourhassan-Moghaddam, K. Jamshidi-Ghaleh. Solvent effect on the absorption and emission spectra of carbon dots: evaluation of ground and excited state dipole moment. BMC chemistry 15 (2021) 1-10. https://doi.org/10.1186/s13065-021-00779-6.

A. Meng, B. Huangfu, L. Sheng, X. Hong, Z. Li. One-pot hydrothermal synthesis of boron and nitrogen co-doped carbon dots for copper ion assay and multicolor cell imaging using fluorescence quenchometric method. Microchemical Journal 174 (2022) 106981. https://doi.org/10.1016/j.-microc.¬2021.106981.

Z. Han, L. He, S. Pan, H. Liu, X. Hu. Hydrothermal synthesis of carbon dots and their application for detection of chlorogenic acid. Luminescence 35 (2020) 989-997. https://doi.org/ https://doi.org/10.1002/bio.3803.

D. Sun, T. Liu, C. Wang, L. Yang, S. Yang, K. Zhuo. Hydrothermal synthesis of fluorescent carbon dots from gardenia fruit for sensitive on-off-on detection of Hg2+ and cysteine. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 240 (2020) 118598. https://doi.org/10.1016/j.saa.¬2020.118598.

C. Zhang, M. Liu, T. Li, S. Liu, Q. Chen, J. Zhang, K. Zhang. One-pot hydrothermal synthesis of dual-emission fluorescent carbon dots for hypochlorous acid detection. Dyes and Pigments 180 (2020) 108507. https://doi.org/10.1016/j.dyepig.2020.108507.

T.N.J.I. Edison, R. Atchudan, N. Karthik, D. Xiong, Y.R. Lee. Facile hydrothermal synthesis of nitrogen rich blue fluorescent carbon dots for cell bio-imaging of Candida albicans. Process Biochemistry 88 (2020) 113-119. https://doi.org/10.1016/j.procbio.2019.10.003.

Z.M. Khan, S. Saifi, Z. Aslam, S.A. Khan, M. Zulfequar. A facile one step hydrothermal synthesis of carbon quantum dots for label-free fluorescence sensing approach to detect picric acid in aqueous solution. Journal of Photochemistry and Photobiology A: Chemistry 388 (2020) 112201. https://doi.org/10.1016/j.jphotochem.2019.112201.

Z. Ye, G. Li, J. Lei, M. Liu, Y. Jin, B. Li. One-step and one-precursor hydrothermal synthesis of carbon dots with superior antibacterial activity. ACS Applied Bio Materials 3 (2020) 7095-7102. https://doi.org/10.1021/acsabm.0c00923.

A. Paul, M. Kurian. Facile synthesis of nitrogen doped carbon dots from waste biomass: Potential optical and biomedical applications. Cleaner Engineering and Technology 3 (2021) 100103. https://doi.org/10.1016/j.clet.2021.100103.

Z. Yi, X. Li, H. Zhang, X. Ji, W. Sun, Y. Yu, Y. Liu, J. Huang, Z. Sarshar, M. Sain. High quantum yield photoluminescent N-doped carbon dots for switch sensing and imaging. Talanta 222 (2021) 121663. https://doi.org/10.1016/j.talanta.2020.121663.

Y. Xie, D. Cheng, X. Liu, A. Han. Green hydrothermal synthesis of N-doped carbon dots from biomass highland barley for the detection of Hg2+. Sensors 19 (2019) 3169. https://doi.org/10.3390/¬s19143169.

A.K. Singh, V.K. Singh, M. Singh, P. Singh, S.R. Khadim, U. Singh, B. Koch, S. Hasan, R. Asthana. One pot hydrothermal synthesis of fluorescent NP-carbon dots derived from Dunaliella salina biomass and its application in on-off sensing of Hg (II), Cr (VI) and live cell imaging. Journal of Photochemistry and Photobiology A: Chemistry 376 (2019) 63-72. https://doi.org/10.1016/j.jphotochem.2019.¬02.023.

Y. Newman Monday, J. Abdullah, N.A. Yusof, S. Abdul Rashid, R.H. Shueb. Facile hydrothermal and solvothermal synthesis and characterization of nitrogen-doped carbon dots from palm kernel shell precursor. Applied Sciences 11 (2021) 1630. https://doi.org/10.3390/app11041630.

D. Wang, X. Mei, S. Wang, J. Li, C. Dong. A one-pot synthesis of fluorescent N, P-codoped carbon dots for vitamin B 12 determination and bioimaging application. New Journal of Chemistry 45 (2021) 3508-3514. https://doi.org/10.1039/D0NJ05597B.

P. Varatharajan, I.S. Banu, M.H. Mamat, N. Vasimalai. Hydrothermal synthesis of orange fluorescent carbon dots and their application in fabrication of warm WLEDs and fluorescent ink. Physica B: Condensed Matter 654 (2023) 414703. https://doi.org/10.1016/j.physb.2023.414703.

K. Harini, K. Girigoswami, D. Ghosh, P. Pallavi, P. Gowtham, A. Girigoswami. Architectural fabrication of multifunctional janus nanostructures for biomedical applications. Nanomedicine Journal 9 (2022) 180-191. https://doi.org/10.22038/NMJ.2022.65101.1682.

K. Harini, K. Girigoswami, A. Girigoswami. Nanopsychiatry: Engineering of nanoassisted drug delivery systems to formulate antidepressants. International Journal of Nano Dimension (2022). https://doi.org/10.22034/IJND.2022.1955783.2133.

K. Harini, P. Pallavi, P. Gowtham, K. Girigoswami, A. Girigoswami. Smart Polymer-Based Reduction Responsive Therapeutic Delivery to Cancer Cells. Current Pharmacology Reports (2022) 1-7. https://doi.org/10.1007/s40495-022-00282-z.

P. Sharmiladevi, M. Breghatha, K. Dhanavardhini, R. Priya, K. Girigoswami, A. Girigoswami. Efficient Wormlike Micelles for the Controlled Delivery of Anticancer Drugs. Nanoscience & Nanotechnology-Asia 11 (2021) 350-356. https://doi.org/10.2174/2210681210999200728115601.

R. Sakthi Devi, A. Girigoswami, M. Siddharth, K. Girigoswami. Applications of Gold and Silver Nanoparticles in Theranostics. Applied Biochemistry and Biotechnology (2022) 1-33. https://doi.org/10.1007/s12010-022-03963-z.

G. Poornima, K. Harini, P. Pallavi, P. Gowtham, K. Girigoswami, A. Girigoswami. RNA–A choice of potential drug delivery system. International Journal of Polymeric Materials and Polymeric Biomaterials (2022) 1-15. https://doi.org/10.1080/00914037.2022.2058946.

A. Girigoswami, M. Ramalakshmi, N. Akhtar, S.K. Metkar, K. Girigoswami. ZnO Nanoflower petals mediated amyloid degradation-An in vitro electrokinetic potential approach. Materials Science and Engineering: C 101 (2019) 169-178. https://doi.org/10.1016/j.msec.2019.03.086.

Y. Zhong, J. Li, Y. Jiao, G. Zuo, X. Pan, T. Su, W. Dong. One-step synthesis of orange luminescent carbon dots for Ag+ sensing and cell imaging. Journal of Luminescence 190 (2017) 188-193. https://doi.org/10.1016/j.jlumin.2017.05.057.

Z. Wang, H. Liao, H. Wu, B. Wang, H. Zhao, M. Tan. Fluorescent carbon dots from beer for breast cancer cell imaging and drug delivery. Analytical Methods 7 (2015) 8911-8917. https://doi.org/-10.1039/C5AY01978H.

H. Liu, Z. Li, Y. Sun, X. Geng, Y. Hu, H. Meng, J. Ge, L. Qu. Synthesis of luminescent carbon dots with ultrahigh quantum yield and inherent folate receptor-positive cancer cell targetability. Scientific Reports 8 (2018) 1-8. https://doi.org/10.1038/s41598-018-19373-3.

K. Datta, O. Kozak, V. Ranc, M. Havrdova, A. Bourlinos, K. Šafářová, K. Hola, K. Tomankova, G. Zoppellaro, M. Otyepka. Quaternized carbon dot-modified graphene oxide for selective cell labelling–controlled nucleus and cytoplasm imaging. Chemical Communications 50 (2014) 10782-10785. https://doi.org/10.1039/C4CC02637C.

J. Ci, Y. Tian, S. Kuga, Z. Niu, M. Wu, Y. Huang. One‐pot green synthesis of nitrogen‐doped carbon quantum dots for cell nucleus labeling and copper (II) detection. Chemistry–An Asian Journal 12 (2017) 2916-2921. https://doi.org/10.1002/asia.201700880.

Y.K. Jung, E. Shin, B.-S. Kim. Cell nucleus-targeting zwitterionic carbon dots. Scientific Reports 5 (2015) 1-9. https://doi.org/10.1038/srep18807.

S.A. Hill, S. Sheikh, Q. Zhang, L.S. Ballesteros, A. Herman, S.A. Davis, D.J. Morgan, M. Berry, D. Benito-Alifonso, M.C. Galan. Selective photothermal killing of cancer cells using LED-activated nucleus targeting fluorescent carbon dots. Nanoscale Advances 1 (2019) 2840-2846. https://doi.org/¬10.1039/¬C9NA00293F.

H. Liu, Y. Bai, Y. Zhou, C. Feng, L. Liu, L. Fang, J. Liang, S. Xiao. Blue and cyan fluorescent carbon dots: one-pot synthesis, selective cell imaging and their antiviral activity. RSC advances 7 (2017) 28016-28023. https://doi.org/10.1039/C7RA03167J

S. Guo, Y. Sun, J. Li, X. Geng, R. Yang, X. Zhang, L. Qu, Z. Li. Fluorescent carbon dots shuttling between mitochondria and the nucleolus for in situ visualization of cell viability. ACS Applied Bio Materials 4 (2020) 928-934. https://doi.org/10.1021/acsabm.0c01408.

H. Zhang, Y. Chen, M. Liang, L. Xu, S. Qi, H. Chen, X. Chen. Solid-phase synthesis of highly fluorescent nitrogen-doped carbon dots for sensitive and selective probing ferric ions in living cells. Analytical Chemistry 86 (2014) 9846-9852. https://doi.org/10.1021/ac502446m.

R. Wang, X. Wang, Y. Sun. One-step synthesis of self-doped carbon dots with highly photoluminescence as multifunctional biosensors for detection of iron ions and pH. Sensors and Actuators B: Chemical 241 (2017) 73-79. https://doi.org/10.1016/j.snb.2016.10.043.

S. Mohammadi, A. Salimi. Fluorometric determination of microRNA-155 in cancer cells based on carbon dots and MnO2 nanosheets as a donor-acceptor pair. Microchimica Acta 185 (2018) 1-10. https://doi.org/10.1007/s00604-018-2868-5.

X. Shan, L. Chai, J. Ma, Z. Qian, J. Chen, H. Feng. B-doped carbon quantum dots as a sensitive fluorescence probe for hydrogen peroxide and glucose detection. Analyst 139 (2014) 2322-2325. https://doi.org/10.1039/C3AN02222F.

Y. Hailing, L. Xiufang, W. Lili, L. Baoqiang, H. Kaichen, H. Yongquan, Z. Qianqian, M. Chaoming, R. Xiaoshuai, Z. Rui. Doxorubicin-loaded fluorescent carbon dots with PEI passivation as a drug delivery system for cancer therapy. Nanoscale 12 (2020) 17222-17237. https://doi.org/10.1039/D0NR01236J.

H.K. Chung, V. Wongso, N.S. Sambudi. Biowaste-derived carbon dots/hydroxyapatite nanocomposite as drug delivery vehicle for acetaminophen. Journal of Sol-Gel Science and Technology 93 (2020) 214-223. https://doi.org/10.1007/s10971-019-05141-w.

N. Sarkar, G. Sahoo, R. Das, G. Prusty, S.K. Swain. Carbon quantum dot tailored calcium alginate hydrogel for pH responsive controlled delivery of vancomycin. European Journal of Pharmaceutical Sciences 109 (2017) 359-371. https://doi.org/10.1016/j.ejps.2017.08.015.

Z. Chen, T. Liao, L. Wan, Y. Kuang, C. Liu, J. Duan, X. Xu, Z. Xu, B. Jiang, C. Li. Dual-stimuli responsive near-infrared emissive carbon dots/hollow mesoporous silica-based integrated theranostics platform for real-time visualized drug delivery. Nano Research 14 (2021) 4264-4273. https://doi.org/10.1007/s12274-021-3624-4.

T. Luo, Y. Nie, J. Lu, Q. Bi, Z. Cai, X. Song, H. Ai, R. Jin. Iron doped carbon dots based nanohybrids as a tetramodal imaging agent for gene delivery promotion and photothermal-chemodynamic cancer synergistic theranostics. Materials & Design 208 (2021) 109878. https://doi.org/10.1016/j.matdes.¬2021.109878.

M.Z. Fahmi, N. Machmudah, P. Indrawasih, A. Wibrianto, M.A. Ahmad, S.C. Sakti, J.-y. Chang. Naproxen release from carbon dot coated magnetite nanohybrid as versatile theranostics for HeLa cancer cells. RSC advances 12 (2022) 32328-32337. https://doi.org/10.1039/D2RA05673A.

B. Tian, S. Liu, L. Feng, S. Liu, S. Gai, Y. Dai, L. Xie, B. Liu, P. Yang, Y. Zhao. Renal‐clearable nickel‐doped carbon dots with boosted photothermal conversion efficiency for multimodal imaging‐guided cancer therapy in the second near‐infrared biowindow. Advanced Functional Materials 31 (2021) 2100549. https://doi.org/10.1002/adfm.202100549.

J. Li, Z.-E. Hu, Y.-J. We, Y.-H. Liu, N. Wang, X.-Q. Yu. Multifunctional carbon quantum dots as a theranostic nanomedicine for fluorescence imaging-guided glutathione depletion to improve chemodynamic therapy. Journal of Colloid and Interface Science 606 (2022) 1219-1228. https://doi.org/10.1016/j.jcis.2021.08.114.

S. Sun, Q. Chen, Z. Tang, C. Liu, Z. Li, A. Wu, H. Lin. Tumor microenvironment stimuli‐responsive fluorescence imaging and synergistic cancer therapy by carbon‐dot–Cu2+ nanoassemblies. Angewandte Chemie 132 (2020) 21227-21234. https://doi.org/10.1002/ange.202007786.

Y. Guo, Y. Fan, G. Li, Z. Wang, X. Shi, M. Shen. “Cluster Bomb” Based on Redox-Responsive Carbon Dot Nanoclusters Coated with Cell Membranes for Enhanced Tumor Theranostics. ACS Applied Materials & Interfaces 13 (2021) 55815-55826. https://doi.org/10.1021/acsami.1c15282.

M. Jiao, Y. Wang, W. Wang, X. Zhou, J. Xu, Y. Xing, L. Chen, Y. Zhang, M. Chen, K. Xu. Gadolinium doped red-emissive carbon dots as targeted theranostic agents for fluorescence and MR imaging guided cancer phototherapy. Chemical Engineering Journal 440 (2022) 135965. https://doi.org/10.1016/j.cej.2022.135965.

M. Zheng, Y. Li, S. Liu, W. Wang, Z. Xie, X. Jing. One-pot to synthesize multifunctional carbon dots for near infrared fluorescence imaging and photothermal cancer therapy. ACS applied materials & interfaces 8 (2016) 23533-23541. https://doi.org/10.1021/acsami.6b07453.

Q. Jiang, L. Liu, Q. Li, Y. Cao, D. Chen, Q. Du, X. Yang, D. Huang, R. Pei, X. Chen. NIR-laser-triggered gadolinium-doped carbon dots for magnetic resonance imaging, drug delivery and combined photothermal chemotherapy for triple negative breast cancer. Journal of Nanobiotechnology 19 (2021) 1-15. https://doi.org/10.1186/s12951-021-00811-w.

Y. Bai, J. Zhao, S. Wang, T. Lin, F. Ye, S. Zhao. Carbon dots with absorption red-shifting for two-photon fluorescence imaging of tumor tissue pH and synergistic phototherapy. ACS applied materials & interfaces 13 (2021) 35365-35375. https://doi.org/10.1021/acsami.1c08076.

A.R. Gul, T.N. Le, M.W. Kim, S.K. Kailasa, K.T. Oh, T.J. Park. One-pot synthesis of carbon dots with intrinsic folic acid for synergistic imaging-guided photothermal therapy of prostate cancer cells. Biomaterials Science 7 (2019) 5187-5196. https://doi.org/10.1039/C9BM01228A.

Y. Li, G. Bai, S. Zeng, J. Hao. Theranostic carbon dots with innovative NIR-II emission for in vivo renal-excreted optical imaging and photothermal therapy. ACS applied materials & interfaces 11 (2019) 4737-4744. https://doi.org/10.1021/acsami.8b14877.

留言 (0)

沒有登入
gif