Addressing barriers in diffuse intrinsic pontine glioma: the transformative role of lipid nanoparticulate drug delivery

S.A. Grimm, M.C. Chamberlain. Brainstem glioma. Current Neurology and Neuroscience Reports 13(5) (2013) 13:346. https://doi.org/10.1007/s11910-013-0346-3

A.D. Forman, W.C. Black, M.A. Smith, B. Freidlin, L.A. Gloeckler Ries, R. Simon. Re: Trends in reported incidence of primary malignant brain tumors in children in the United States [4] (multiple letters). Journal of the National Cancer Institute 91 (1999) 648-64910. https://doi.org/1093/jnci/91.7.648

C. Ferraris, R. Cavalli, P.P. Panciani, L. Battaglia. Overcoming the blood-brain barrier: Successes and challenges in developing nanoparticle-mediated drug delivery systems for the treatment of brain tumours. International Journal of Nanomedicine 15 (2020) 2999-3022 https://doi.org/10.2147/IJN.S231479

D.N. Louis, A. Perry, G. Reifenberger, A. von Deimling, D. Figarella-Branger, W.K. Cavenee, H. Ohgaki, O.D. Wiestler, P. Kleihues, D.W. Ellison. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathologica 131 (2016) 803-820. https://doi.org/10.1007/s00401-016-1545-1

R. Chen, M. Smith-Cohn, A.L. Cohen, H. Colman. Glioma Subclassifications and Their Clinical Significance. Neurotherapeutics 14 (2017) 284-297 https://doi.org/10.1007/s13311-017-0519-x

D. Srikanthan, M.S. Taccone, R. Van Ommeren, J. Ishida, S.L. Krumholtz, J.T. Rutka. Diffuse intrinsic pontine glioma: current insights and future directions. Chinese Neurosurgical Journal 7 (2021) 6 https://doi.org/10.1186/s41016-020-00218-w

K.E. Warren. Diffuse intrinsic pontine glioma: poised for progress. Frontiers in Oncology 2 (2012) 205 https://doi.org/10.3389/fonc.2012.00205

D. Hargrave, U. Bartels, E. Bouffet. Diffuse brainstem glioma in children: Critical review of clinical trials. Lancet Oncology 7 (2006) 241-248. https://doi.org/10.1016/S1470-2045(06)70615-5

P.K. Duffner, M.E. Cohen, A.I. Freeman. Pediatric brain tumors: an overview. CA: A Cancer Journal for Clinicians 35(5) (1985) 287-301. https://doi.org/10.3322/canjclin.35.5.287

C. Kolsteeg, E. Hulleman, J. Bianco. Emerging nanomedical strategies for direct targeting of pediatric and adult diffuse gliomas. British Journal of Cancer 127 (2022) 1193-1200 https://doi.org/10.1038/s41416-022-01884-6

DIPG: A definition and brief history. https://mithilprasadfoundation.org/blog/dipg-definition-and-history (accessed on 20/10/2023).

J.E. Pellot, O, De Jesus. Diffuse intrinsic pontine glioma. StatPearls [Internet]. StatPearls Publishing (2023). https://www.ncbi.nlm.nih.gov/books/NBK560640/

J. Fangusaro. Pediatric high-grade gliomas and diffuse intrinsic pontine gliomas. Journal of Child Neurology 24 (2009) 1409-1417. https://doi.org/10.1177/0883073809338960

U. Bartels, C. Hawkins, G. Vézina, L. Kun, M. Souweidane, E. Bouffet. Proceedings of the diffuse intrinsic pontine glioma (DIPG) Toronto Think Tank: Advancing basic and translational research and cooperation in DIPG. Journal of Neuro-Oncology 105 (2011) 119-125 https://doi.org/10.1007/s11060-011-0704-4

S.N. Krieger, M.N. Streicher, R. Trampel, R. Turner. Cerebral blood volume changes during brain activation. Journal of Cerebral Blood Flow and Metabolism 32 (2012) 1618-1631. https://doi.org/10.1038/jcbfm.2012.63.

P. Buczkowicz, C. Hoeman, P. Rakopoulos, S. Pajovic, L. Letourneau, M. Dzamba, A. Morrison, P. Lewis, E. Bouffet, U. Bartels, J. Zuccaro, S. Agnihotri, S. Ryall, M. Barszczyk, Y. Chornenkyy, M. Bourgey, G. Bourque, A. Montpetit, F. Cordero, P. Castelo-Branco, J. Mangerel, U. Tabori, K.C. Ho, A. Huang, K.R. Taylor, A. Mackay, A.E. Bendel, J. Nazarian, J.R. Fangusaro, M.A. Karajannis, D. Zagzag, N.K. Foreman, A. Donson, J. V. Hegert, A. Smith, J. Chan, L. Lafay-Cousin, S. Dunn, J. Hukin, C. Dunham, K. Scheinemann, J. Michaud, S. Zelcer, D. Ramsay, J. Cain, C. Brennan, M.M. Souweidane, C. Jones, C.D. Allis, M. Brudno, O. Becher, C. Hawkins. Genomic analysis of diffuse intrinsic pontine gliomas identifies three molecular subgroups and recurrent activating ACVR1 mutations. Nature Genetics 46 (2014) 451-456. https://doi.org/10.1038/ng.2936

P. Buczkowicz, C. Hawkins. Pathology, molecular genetics, and epigenetics of diffuse intrinsic pontine glioma. Frontiers in Oncology 5 (2015) 147. https://doi.org/10.3389/fonc.2015.00147

P.W. Lewis, M.M. Müller, M.S. Koletsky, F. Cordero, S. Lin, L.A. Banaszynski, B.A. Garcia, T.W. Muir, O.J. Becher, C.D. Allis. Inhibition of PRC2 activity by a gain-of-function H3 mutation found in pediatric glioblastoma. Science 340 (6134), (2013) 857-861. https://doi.org/ 10.1126/science.1232245

D. Castel, C. Philippe, R. Calmon, L. Le Dret, N. Truffaux, N. Boddaert, M. Pagès, K.R. Taylor, P. Saulnier, L. Lacroix, A. Mackay, C. Jones, C. Sainte-Rose, T. Blauwblomme, F. Andreiuolo, S. Puget, J. Grill, P. Varlet, M.A. Debily. Histone H3F3A and HIST1H3B K27M mutations define two subgroups of diffuse intrinsic pontine gliomas with different prognosis and phenotypes. Acta Neuropathologica 130 (2015) 815-827. https://doi.org/10.1007/s00401-015-1478-0

D.A. Khuong-Quang, P. Buczkowicz, P. Rakopoulos, X.Y. Liu, A.M. Fontebasso, E. Bouffet, U. Bartels, S. Albrecht, J. Schwartzentruber, L. Letourneau, M. Bourgey, G. Bourque, A. Montpetit, G. Bourret, P. Lepage, A. Fleming, P. Lichter, M. Kool, A. Von Deimling, D. Sturm, A. Korshunov, D. Faury, D.T. Jones, J. Majewski, S.M. Pfister, N. Jabado, C. Hawkins. K27M mutation in histone H3.3 defines clinically and biologically distinct subgroups of pediatric diffuse intrinsic pontine gliomas. Acta Neuropathologica 124 (2012) 439-447 https://doi.org/10.1007/s00401-012-0998-0

C. Jones, S.J. Baker. Unique genetic and epigenetic mechanisms driving paediatric diffuse high-grade glioma. Nature Reviews Cancer 14 (2014) 651-661. https://doi.org/10.1038/nrc3811

C.S. Grasso, Y. Tang, N. Truffaux, N.E. Berlow, L. Liu, M.A. Debily, M.J. Quist, L.E. Davis, E.C. Huang, P.J. Woo, A. Ponnuswami, S. Chen, T.B. Johung, W. Sun, M. Kogiso, Y. Du, L. Qi, Y. Huang, M. Hütt-Cabezas, K.E. Warren, L. Le Dret, P.S. Meltzer, H. Mao, M. Quezado, D.G. Van Vuurden, J. Abraham, M. Fouladi, M.N. Svalina, N. Wang, C. Hawkins, J. Nazarian, M.M. Alonso, E.H. Raabe, E. Hulleman, P.T. Spellman, X.N. Li, C. Keller, R. Pal, J. Grill, M. Monje. Functionally defined therapeutic targets in diffuse intrinsic pontine glioma. Nature Medicine 21 (2015) 555-559 https://doi.org/10.1038/nm.3855

P.F. Recinos, D.M. Sciubba, G.I. Jallo. Brainstem tumors: Where are we today? Pediatric Neurosurgery 43 (2007) 192-201. https://doi.org/10.1159/000098831

A. Perry, C.R. Miller, M. Gujrati, B.W. Scheithauer, S.C. Zambrano, S.C. Jost, R. Raghavan, J. Qian, E.J. Cochran, J.T. Huse, E.C. Holland, P.C. Burger, M.K. Rosenblum. Malignant gliomas with primitive neuroectodermal tumor-like components: A clinicopathologic and genetic study of 53 cases. Brain Pathology 19 (2009) 81-90. https://doi.org/10.1111/j.1750-3639.2008.00167.x

A.A. Yetisgin, S. Cetinel, M. Zuvin, A. Kosar, O. Kutlu. Therapeutic nanoparticles and their targeted delivery applications. Molecules 25(9) (2020) 2193. https://doi.org/10.3390/molecules25092193

R.S. Kadam, D.W.A. Bourne, U.B. Kompella. Nano-advantage in enhanced drug delivery with biodegradable nanoparticles: Contribution of reduced clearance. Drug Metabolism and Disposition 40 (2012) 1380-1388. https://doi.org/10.1124/dmd.112.044925

S.T. Jahan, S.M.A. Sadat, M. Walliser, A. Haddadi. Targeted Therapeutic Nanoparticles: An Immense Promise to Fight against Cancer. Journal of Drug Delivery 2017 (2017) 9090325. https://doi.org/10.1155/2017/9090325

S. Chandrasekhar, L.K. Iyer, J.P. Panchal, E.M. Topp, J.B. Cannon, V. V. Ranade. Microarrays and microneedle arrays for delivery of peptides, proteins, vaccines and other applications. Expert Opinion on Drug Delivery 10 (2013) 1155-1170. https://doi.org/10.1517/17425247.2013.797405

P. Rabl, S.J. Kolkowitz, F.H.L. Koppens, J.G.E. Harris, P. Zoller, M.D. Lukin. A quantum spin transducer based on nanoelectromechanical resonator arrays. Nature Physics 6 (2010) 602-608. https://doi.org/10.1038/nphys1679

P.S. Shabnashmi, S. Naga Kani, V. Vithya, B. Vijaya Lakshmi, R. Jasmine. Therapeutic applications of nanorobots-respirocytes and microbivores. Journal of Chemical and Pharmaceutical Research 8(5) (2016) 605-609. https://www.jocpr.com/articles/therapeutic-applications-of-nanorobots-respirocytes-and-microbivores.pdf

J. Garg, K. Pathania, S.P. Sah, S. V. Pawar. Nanostructured lipid carriers: a promising drug carrier for targeting brain tumours. Future Journal of Pharmaceutical Sciences 8 (2022) 25. https://doi.org/10.1186/s43094-022-00414-8

C. Saraiva, C. Praça, R. Ferreira, T. Santos, L. Ferreira, L. Bernardino. Nanoparticle-mediated brain drug delivery: Overcoming blood-brain barrier to treat neurodegenerative diseases. Journal of Controlled Release 235 (2016) 34-47. https://doi.org/10.1016/j.jconrel.2016.05.044

A.B. Etame, C.A. Smith, W.C.W. Chan, J.T. Rutka. Design and potential application of PEGylated gold nanoparticles with size-dependent permeation through brain microvasculature. Nanomedicine: Nanotechnology, Biology, and Medicine 7 (2011) 992-1000. https://doi.org/10.1016/j.nano.2011.04.004

S. Hanada, K. Fujioka, Y. Inoue, F. Kanaya, Y. Manome, K. Yamamoto. Cell-based in vitro blood-brain barrier model can rapidly evaluate nanoparticles’ brain permeability in association with particle size and surface modification. International Journal of Molecular Sciences 15 (2014) 1812-1825. https://doi.org/10.3390/ijms15021812

G. Sonavane, K. Tomoda, K. Makino. Biodistribution of colloidal gold nanoparticles after intravenous administration: Effect of particle size. Colloids and Surfaces B: Biointerfaces 66 (2008) 274-280. https://doi.org/10.1016/j.colsurfb.2008.07.004

P.R. Lockman, J.M. Koziara, R.J. Mumper, D. Allen. Nanoparticle surface charges alter blood-brain barrier integrity and permeability. Journal of Drug Targeting 12 (2004) 635-641 https://doi.org/10.1080/10611860400015936

X. Huang, L. Li, T. Liu, N. Hao, H. Liu, D. Chen, F. Tang. The shape effect of mesoporous silica nanoparticles on biodistribution, clearance, and biocompatibility in vivo. ACS Nano 5 (2011) 5390-5399. https://doi.org/10.1021/nn200365a

J. Kreuter, T. Hekmatara, S. Dreis, T. Vogel, S. Gelperina, K. Langer. Covalent attachment of apolipoprotein A-I and apolipoprotein B-100 to albumin nanoparticles enables drug transport into the brain. Journal of Controlled Release 118 (2007) 54-58. https://doi.org/10.1016/j.jconrel.2006.12.012

M. Kulkarni, K. Patel, A. Patel, S. Patel, J. Desai, M. Patel, U. Shah, A. Patel, N. Solanki. Nanomaterials as drug delivery agents for overcoming the blood-brain barrier: A comprehensive review. ADMET and DMPK 12 (2024) 63-105. https://doi.org/10.5599/admet.2043

M. Shilo, M. Motiei, P. Hana, R. Popovtzer. Transport of nanoparticles through the blood-brain barrier for imaging and therapeutic applications. Nanoscale 6 (2014) 2146-2152. https://doi.org/10.1039/c3nr04878k

S. Guerrero, E. Araya, J.L. Fiedler, J.I. Arias, C. Adura, F. Albericio, E. Giralt, J.L. Arias, M.S. Fernndez, M.J. Kogan. Improving the brain delivery of gold nanoparticles by conjugation with an amphipathic peptide. Nanomedicine 5 (2010) 897-913. https://doi.org/10.2217/nnm.10.74

R.M. Hochstrasser. Two-dimensional spectroscopy at infrared and optical frequencies. Proceedings of the National Academy of Sciences of the United States of America 104 (2007) 14190-14196. https://doi.org/10.1073/pnas.0704079104

M. Biondi, P. D’Alessandro. Genus-group names of Afrotropical flea beetles (Coleoptera: Chrysomelidae: Alticinae): Annotated catalogue and biogeographical notes. European Journal of Entomology 107 (2010) 401-424. https://doi.org/10.14411/eje.2010.049

C.H.J. Choi, C.A. Alabi, P. Webster, M.E. Davis. Mechanism of active targeting in solid tumors with transferrin-containing gold nanoparticles. Proceedings of the National Academy of Sciences of the United States of America 107 (2010) 1235-1240. https://doi.org/10.1073/pnas.0914140107

F.J. Martinez-Veracoechea, D. Frenkel. Designing super selectivity in multivalent nanoparticle binding. Proceedings of the National Academy of Sciences of the United States of America 108 (2011) 10963-10968. https://doi.org/10.1073/pnas.1105351108

E.A. Nance, G.F. Woodworth, K.A. Sailor, T.Y. Shih, Q. Xu, G. Swaminathan, D. Xiang, C. Eberhart, J. Hanes. A dense poly(ethylene glycol) coating improves penetration of large polymeric nanoparticles within brain tissue. Science Translational Medicine 4 (2012) 149ra119 https://doi.org/10.1126/scitranslmed.3003594

Y. Zhang, M. Li, X. Gao, Y. Chen, T. Liu. Nanotechnology in cancer diagnosis: Progress, challenges and opportunities. Journal of Hematology and Oncology 12 (2019) 137. https://doi.org/10.1186/s13045-019-0833-3

W. Zhou, X. Gao, D. Liu, X. Chen. Gold Nanoparticles for in Vitro Diagnostics. Chemical Reviews 115 (2015) 10575-10636 https://doi.org/10.1021/acs.chemrev.5b00100

S. Jia, R. Zhang, Z. Li, J. Li. Clinical and biological significance of circulating tumor cells, circulating tumor DNA, and exosomes as biomarkers in colorectal cancer. Oncotarget 8 (2017) 55632-55645 https://doi.org/10.18632/oncotarget.17184

S. Stamatovic, R. Keep, A. Andjelkovic. Brain Endothelial Cell-Cell Junctions: How to “Open” the Blood Brain Barrier. Current Neuropharmacology 6 (2008) 179-192. https://doi.org/10.2174/157015908785777210

H.E. De Vries, M.C.M. Blom-Roosemalen, M. Van Oosten, A.G. De Boer, T.J.C. Van Berkel, D.D. Breimer, J. Kuiper. The influence of cytokines on the integrity of the blood-brain barrier in vitro. Journal of Neuroimmunology 64 (1996) 37-43. https://doi.org/10.1016/0165-5728(95)00148-4

A.R. Khan, X. Yang, M. Fu, G. Zhai. Recent progress of drug nanoformulations targeting to brain. Journal of Controlled Release 291 (2018) 37-64. https://doi.org/10.1016/j.jconrel.2018.10.004

A.R. Khan, M. Liu, M.W. Khan, G. Zhai. Progress in brain targeting drug delivery system by nasal route. Journal of Controlled Release 268 (2017) 364-389. https://doi.org/10.1016/j.jconrel.2017.09.001

K.K. Jain. Nanobiotechnology-based drug delivery to the central nervous system. Neurodegenerative Diseases 4 (2007) 287-291. https://doi.org/10.1159/000101884

R.R. Wakaskar. Promising effects of nanomedicine in cancer drug delivery. Journal of Drug Targeting 26 (2018) 319-324. https://doi.org/10.1080/1061186X.2017.1377207

W.C. Luo, X. Lu. Solid Lipid Nanoparticles for Drug Delivery. Methods in Molecular Biology (Clifton, N.J.) 2622 (2023) 139-146. https://doi.org/10.1007/978-1-0716-2954-3_12

P. Yingchoncharoen, D.S. Kalinowski, D.R. Richardson. Lipid-based drug delivery systems in cancer therapy: What is available and what is yet to come. Pharmacological Reviews 68 (2016) 701-787. https://doi.org/10.1124/pr.115.012070

A.D. Bangham, M.M. Standish, J.C. Watkins. Diffusion of univalent ions across the lamellae of swollen phospholipids. Journal of Molecular Biology 13 (1965) 238-252. https://doi.org/10.1016/S0022-2836(65)80093-6

G. Yang, Y. Liu, S. Jin, C.X. Zhao. Development of Core-Shell Nanoparticle Drug Delivery Systems Based on Biomimetic Mineralization. ChemBioChem 21 (2020) 2871-2879. https://doi.org/10.1002/cbic.202000105

C. Has, P. Sunthar. A comprehensive review on recent preparation techniques of liposomes. Journal of Liposome Research 30 (2020) 336-365. https://doi.org/10.1080/08982104.2019.1668010

L. Maja, K. Željko, P. Mateja. Sustainable technologies for liposome preparation. Journal of Supercritical Fluids 165 (2020) 104984. https://doi.org/10.1016/j.supflu.2020.104984

R. Ran, A.P.J. Middelberg, C.X. Zhao. Microfluidic synthesis of multifunctional liposomes for tumour targeting. Colloids and Surfaces B: Biointerfaces 148 (2016) 402-410. https://doi.org/10.1016/j.colsurfb.2016.09.016

R. Ran, H. Wang, Y. Liu, Y. Hui, Q. Sun, A. Seth, D. Wibowo, D. Chen, C.X. Zhao. Microfluidic self-assembly of a combinatorial library of single- and dual-ligand liposomes for in vitro and in vivo tumor targeting. European Journal of Pharmaceutics and Biopharmaceutics 130 (2018) 1-10. https://doi.org/10.1016/j.ejpb.2018.06.017

R. Sonkar, Sonali, A. Jha, M.K. Viswanadh, A.S. Burande, Narendra, D.M. Pawde, K.K. Patel, M. Singh, B. Koch, M.S. Muthu. Gold liposomes for brain-targeted drug delivery: Formulation and brain distribution kinetics. Materials Science and Engineering C 120 (2021) 111652. https://doi.org/10.1016/j.msec.2020.111652

X. Wei, X. Chen, M. Ying, W. Lu. Brain tumor-targeted drug delivery strategies. Acta Pharmaceutica Sinica B 4 (2014) 193-201. https://doi.org/10.1016/j.apsb.2014.03.001

Sonali, R.P. Singh, N. Singh, G. Sharma, M.R. Vijayakumar, B. Koch, S. Singh, U. Singh, D. Dash, B.L. Pandey, M.S. Muthu. Transferrin liposomes of docetaxel for brain-targeted cancer applications: formulation and brain theranostics. Drug Delivery 23 (2016) 1261-1271. https://doi.org/10.3109/10717544.2016.1162878

Y. Hu, J. Rip, P.J. Gaillard, E.C.M. de Lange, M. Hammarlund-Udenaes. The Impact of Liposomal Formulations on the Release and Brain Delivery of Methotrexate: An In Vivo Microdialysis Study. Journal of Pharmaceutical Sciences 106 (2017) 2606-2613. https://doi.org/10.1016/j.xphs.2017.03.009

A.M. Grabrucker, B. Ruozi, D. Belletti, F. Pederzoli, F. Forni, M.A. Vandelli, G. Tosi. Nanoparticle transport across the blood brain barrier. Tissue Barriers 4 (2016) e1153568. https://doi.org/10.1080/21688370.2016.1153568

T. Sasaki, J. Watanabe, X. He, H. Katagi, A. Suri, Y. Ishi, K. Abe, M. Natsumeda, W.H. Frey, P. Zhang, R. Hashizume. Intranasal delivery of nanoliposomal SN-38 for treatment of diffuse midline glioma. Journal of Neurosurgery 138(6) (2022) 1570–1579. https://doi.org/10.3171/2022.9.jns22715

J. Clymer, M.W. Kieran. The integration of biology into the treatment of diffuse intrinsic pontine glioma: A review of the North American clinical trial perspective. Frontiers in Oncology 8 (2018) 169. https://doi.org/10.3389/fonc.2018.00169

N.E. Helwig, S. Hong, E.T. Hsiao-wecksler. d-limonene-loaded liposomes target malignant glioma cells via the downregulation of angiogenic growth factors. Journal of Drug Delivery Science and Technology 82 (2023) 104358. https://doi.org/10.1016/j.jddst.2023.104358

V. É. Berberine and folic acid co-modified pH-sensitive cascade-targeted PTX-liposomes coated with Tween 80 for treating glioma. Bioorganic & Medicinal Chemistry 69 (2022) 185-198. https://doi.org/10.1016/j.bmc.2022.116893

N.E. Helwig, S. Hong, E.T. Hsiao-wecksler. Synthesis and Evaluation of High Functionality and Quality Cell-penetrating Peptide Conjugated Lipid for Octaarginine Modified PEGylated Liposomes In U251 and U87 Glioma Cells. Journal of Pharmaceutical Sciences 111 (2022) 1719-1727. https://doi.org/10.1016/j.xphs.2021.11.022

B.S. 3 Muhammad Ismail 1, Wen Yang 1, Yanfei Li 1, Tianran Chai 1, Dongya Zhang 1, Qiuli Du 1, Pir Muhammad 1, Sumaira Hanif 1, Meng Zheng 2. Targeted liposomes for combined delivery of artesunate and temozolomide to resistant glioblastoma. Biomaterials 287 (2022) 121608. https://doi.org/10.1016/j.biomaterials.2022.121608

N. Dhiman, R. Awasthi, B. Sharma, H. Kharkwal, G.T. Kulkarni. Lipid Nanoparticles as Carriers for Bioactive Delivery. Frontiers in Chemistry 9 (2021) 580118. https://doi.org/10.3389/fchem.2021.580118

K. Westesen, H. Bunjes. Do nanoparticles prepared from lipids solid at room temperature always possess a solid lipid matrix? International Journal of Pharmaceutics 115 (1995) 129-131. https://doi.org/10.1016/0378-5173(94)00347-8

N. Naseri, H. Valizadeh, P. Zakeri-Milani. Solid lipid nanoparticles and nanostructured lipid carriers: Structure preparation and application. Advanced Pharmaceutical Bulletin 5 (2015) 305-313 https://doi.org/10.15171/apb.2015.043

Y. Dong, W.K. Ng, S. Shen, S. Kim, R.B.H. Tan. Solid lipid nanoparticles: Continuous and potential large-scale nanoprecipitation production in static mixers. Colloids and Surfaces B 94 (2012) 68-72. https://doi.org/10.1016/j.colsurfb.2012.01.018

V.H.S. Araujo, L. Delello Di Filippo, J.L. Duarte, L. Spósito, B.A.F. de Camargo, P.B. da Silva, M. Chorilli. Exploiting solid lipid nanoparticles and nanostructured lipid carriers for drug delivery against cutaneous fungal infections. Critical Reviews in Microbiology 47 (2021) 79-90. https://doi.org/10.1080/1040841X.2020.1843399

S. Mukherjee, S. Ray, R.S. Thakur. Solid lipid nanoparticles: a modern formulation approach in drug delivery system. Indian Journal of Pharmceutical Science 71(4) (2009) 349. https://doi.org/10.4103/0250-474X.57282

G. Ak, A. Ünal, T. Karakayalı, B. Özel, N. Selvi Günel, Ş. Hamarat Şanlıer. Brain-targeted, drug-loaded solid lipid nanoparticles against glioblastoma cells in culture. Colloids and Surfaces B: Biointerfaces 206 (2021) 111946. https://doi.org/10.1016/j.colsurfb.2021.111946

J.I.D.S. Alexandre, S.M.D. Santos Neto, A.P. Coutinho, T.D.A.T.D. Melo, , E.A.P. Gonçalves, M.V.S. Gondim, A.C.D. Antonino, A.E.C.D.G.D.C. Rabelo, A.L.D. Oliveira. Sorption of the Direct Black 22 dye in alluvial soil. Revista Ambiente & Água, 15 (2020) e2483. https://doi.org/10.4136/ambi-agua.2483

S. Wang, T. Chen, R. Chen, Y. Hu, M. Chen, Y. Wang. Emodin loaded solid lipid nanoparticles: Preparation, characterization and antitumor activity studies. International Journal of Pharmaceutics 430 (2012) 238-246. https://doi.org/10.1016/j.ijpharm.2012.03.027

V.S. 1 Priyanka Jain 1, Vikas Pandey 1. Bioconjugate-loaded solid lipid nanoparticles for enhanced anticancer drug delivery to brain cancer cells: An in vitro evaluation. Indian Journal of Medical Research 159(1) (2022) 139-148. https://doi.org/10.4103/ijmr.IJMR_514_19

I. Banerjee, K. De, D. Mukherjee, G. Dey, S. Chattopadhyay, M. Mukherjee, M. Mandal, A.K. Bandyopadhyay, A. Gupta, S. Ganguly, M. Misra. Paclitaxel-loaded solid lipid nanoparticles modified with Tyr-3-octreotide for enhanced anti-angiogenic and anti-glioma therapy. Acta Biomaterialia 38 (2016) 69-81. https://doi.org/10.1016/j.actbio.2016.04.026

K.S. Joshy, C.P. Sharma, N. Kalarikkal, K. Sandeep, S. Thomas, L.A. Pothen. Evaluation of in-vitro cytotoxicity and cellular uptake efficiency of zidovudine-loaded solid lipid nanoparticles modified with Aloe Vera in glioma cells. Materials Science and Engineering C 66 (2016) 40-50. https://doi.org/10.1016/j.msec.2016.03.031

A. Grillone, M. Battaglini, S. Moscato, L. Mattii, C. De Julián Fernández, A. Scarpellini, M. Giorgi, E. Sinibaldi, G. Ciofani. Nutlin-loaded magnetic solid lipid nanoparticles for targeted glioblastoma treatment. Nanomedicine 14 (2019) 727-752. https://doi.org/10.2217/nnm-2018-0436

M. Elmowafy, M.M. Al-Sanea. Nanostructured lipid carriers (NLCs) as drug delivery platform: Advances in formulation and delivery strategies. Saudi Pharmaceutical Journal 29 (2021) 999-1012. https://doi.org/10.1016/j.jsps.2021.07.015

M. Aliofkhazraei. Handbook of Nanoparticles. Springer International Publishing Switzerland, 2016. https://doi.org/10.1007/978-3-319-15338-4

A. Khosa, S. Reddi, R.N. Saha. Nanostructured lipid carriers for site-specific drug delivery. Biomedicine and Pharmacotherapy 103 (2018) 598-613. https://doi.org/10.1016/j.biopha.2018.04.055

J. Qu, L. Zhang, Z. Chen, G. Mao, Z. Gao, X. Lai, X. Zhu, J. Zhu. Nanostructured lipid carriers, solid lipid nanoparticles, and polymeric nanoparticles: which kind of drug delivery system is better for glioblastoma chemotherapy? Drug Delivery 23 (2016) 3408-3416. https://doi.org/10.1080/10717544.2016.1189465

S.B. 6 Saurabh Mittal 1, Sadia Shah 2, Harlokesh Narayan Yadav 3, Javed Ali 4, Madan Mohan Gupta 5. Quality by design engineered, enhanced anticancer activity of temozolomide and resveratrol coloaded NLC and brain targeting via lactoferrin conjugation in treatment of glioblastoma. European Journal of Pharmaceutics and Biopharmaceutics 191 (2023) 175-188. https://doi.org/10.1016/j.ejpb.2023.08.018

T. Zwain, J.E. Alder, B. Sabagh, A. Shaw, A.J. Burrow, K.K. Singh. Tailoring functional nanostructured lipid carriers for glioblastoma treatment with enhanced permeability through in-vitro 3D BBB/BBTB models. Materials Science and Engineering: C 121 (2021) 111774. https://doi.org/10.1016/j.msec.2020.111774

H.V. b d Masoud Farshbaf a b c, Solmaz Mojarad-Jabali b d, Salar Hemmati b, Ahmad Yari Khosroushahi a b, Hamidreza Motasadizadeh e f, Amir Zarebkohan a. Enhanced BBB and BBTB penetration and improved anti-glioma behavior of Bortezomib through dual-targeting nanostructured lipid carriers. Journal of Controlled Release 345 (2022) 371-384. https://doi.org/10.1016/j.jconrel.2022.03.019

A.S. Shirazi, R. Varshochian, M. Rezaei, Y.H. Ardakani, R. Dinarvand. SN38 loaded nanostructured lipid carriers (NLCs); preparation and in vitro evaluations against glioblastoma. Journal of Materials Science: Materials in Medicine 32 (2021) 78. https://doi.org/10.1007/s10856-021-06538-2

S. Zhang, C. Lu, X. Zhang, J. Li, H. Jiang. Targeted delivery of etoposide to cancer cells by folate-modified nanostructured lipid drug delivery system. Drug Delivery 23 (2016) 1838-1845. https://doi.org/10.3109/10717544.2016.1141258

D.C.F. Soares, F. Poletto, M.J. Eberhardt, S.C. Domingues, F.B. De Sousa, M.L. Tebaldi. Polymer-hybrid nanosystems for antiviral applications: Current advances. Biomedicine and Pharmacotherapy 146 (2022) 112249. https://doi.org/10.1016/j.biopha.2021.112249

A. Mukherjee, A.K. Waters, P. Kalyan, A.S. Achrol, S. Kesari, V.M. Yenugonda. Lipid-polymer hybrid nanoparticles as a nextgeneration drug delivery platform: State of the art, emerging technologies, and perspectives. International Journal of Nanomedicine 14 (2019) 1937-1952 https://doi.org/10.2147/IJN.S198353

K. Hadinoto, A. Sundaresan, W.S. Cheow. Lipid-polymer hybrid nanoparticles as a new generation therapeutic delivery platform: A review. European Journal of Pharmaceutics and Biopharmaceutics 85 (2013) 427-443. https://doi.org/10.1016/j.ejpb.2013.07.002

V. Dave, K. Tak, A. Sohgaura, A. Gupta, V. Sadhu, K.R. Reddy. Lipid-polymer hybrid nanoparticles: Synthesis strategies and biomedical applications. Journal of Microbiological Methods 160 (2019) 130-142. https://doi.org/10.1016/j.mimet.2019.03.017

H.X. 5 Xiaoqi Wang , Lu Ye , Weichong He , Chuanhui Teng , Shanbo Sun , Hongdan Lu , Shengnan Li , Lingyan Lv , Xiang Cao , Haoyuan Yin , Wei Lv . In situ targeting nanoparticles-hydrogel hybrid system for combined chemo-immunotherapy of glioma. Journal of Controlled Release (2022) 786-797 https://doi.org/10.1016/j.jconrel.2022.03.050

K. Shi, J. Zhou, Q. Zhang, H. Gao, Y. Liu, T. Zong, Q. He. Arginine-glycine-aspartic acid-modified lipid-polymer hybrid nanoparticles for docetaxel delivery in glioblastoma multiforme. Journal of Biomedical Nanotechnology 11 (2015) 382-391. https://doi.org/10.1166/jbn.2015.1965

R. Marchan, R. Reif, J.G. Hengstler. Toxicology of magnetic nanoparticles: Disturbed body iron ho-meostasis? Archives of Toxicology 86 (2012) 683-684. https://doi.org/10.1007/s00204-012-0850-2

S. Doktorovová, A.B. Kovačević, M.L. Garcia, E.B. Souto. Preclinical safety of solid lipid nanoparticles and nanostructured lipid carriers: Current evidence from in vitro and in vivo evaluation. European Journal of Pharmaceutics and Biopharmaceutics 108 (2016) 235-252. https://doi.org/10.1016/j.ejpb.2016.08.001

S. Doktorovova, E.B. Souto, A.M. Silva. Nanotoxicology applied to solid lipid nanoparticles and nanostructured lipid carriers - A systematic review of in vitro data. European Journal of Pharmaceutics and Biopharmaceutics 87 (2014) 1-18. https://doi.org/10.1016/j.ejpb.2014.02.005

H.Y. Xue, S. Liu, H.L. Wong. Nanotoxicity: A key obstacle to clinical translation of sirna-based nanomedicine. Nanomedicine 9 (2014) 295-312. https://doi.org/10.2217/nnm.13.204

J.E.N. Dolatabadi, H. Hamishehkar, M. Eskandani, H. Valizadeh. Formulation, characterization and cytotoxicity studies of alendronate sodium-loaded solid lipid nanoparticles. Colloids and Surfaces B: Biointerfaces 117 (2014) 21-28. https://doi.org/10.1016/j.colsurfb.2014.01.055

S. Bhushan, V. Kakkar, H.C. Pal, D.M. Mondhe, I.P. Kaur. The augmented anticancer potential of AP9-cd loaded solid lipid nanoparticles in human leukemia Molt-4 cells and experimental tumor. Chemico-Biological Interactions 244 (2016) 84-93. https://doi.org/10.1016/j.cbi.2015.11.022

M. Eskandani, H. Nazemiyeh. European Journal of Pharmaceutical Sciences Self-reporter shikonin-Act-loaded solid lipid nanoparticle : Formulation , physicochemical characterization and geno / cytotoxicity evaluation. European Journal of Pharmaceutical Sciences 59 (2014) 49-57. https://doi.org/10.1016/j.ejps.2014.04.009

S. Lakkadwala, S. Nguyen, J. Lawrence, S.M. Nauli, J. Nesamony. Physico-chemical characterisation, cytotoxic activity, and biocompatibility studies of tamoxifen-loaded solid lipid nanoparticles prepared via a temperature-modulated solidification method. Journal of Microencapsulation 31 (2014) 590-599. https://doi.org/10.3109/02652048.2014.898707

F. Farjadian, A. Ghasemi, O. Gohari, A. Roointan, M. Karimi, M.R. Hamblin. Nanopharmaceuticals and nanomedicines currently on the market: Challenges and opportunities. Nanomedicine 14(1) (2019) 96-126. https://doi.org/10.2217/nnm-2018-0120

M. Zhao, H. Li, L. Fan, Y. Ma, H. Gong, W. Lai, Q. Fang, Z. Hu. Quantitative proteomic analysis to the first commercialized liposomal paclitaxel nano-platform Lipusu revealed the molecular mechanism of the enhanced anti-tumor effect. Artificial Cells, Nanomedicine and Biotechnology 46 (2018) 147-155. https://doi.org/10.1080/21691401.2018.1489822

Y. Barenholz. Doxil® - The first FDA-approved nano-drug: Lessons learned. Journal of Controlled Release 160 (2012) 117-134. https://doi.org/10.1016/j.jconrel.2012.03.020

G.M. Jensen, D.F. Hodgson. Opportunities and challenges in commercial pharmaceutical liposome applications. Advanced Drug Delivery Reviews 154-155 (2020) 2-12. https://doi.org/10.1016/j.addr.2020.07.016

A. Fassas, A. Anagnostopoulos. The use of liposomal daunorubicin (DaunoXome) in acute myeloid leukemia. Leukemia and Lymphoma 46 (2005) 795-802. https://doi.org/10.1080/10428190500052438

L. Kager, Pötschger, Bielack. Review of mifamurtide in the treatment of patients with osteosarcoma. Therapeutics and Clinical Risk Management 6 (2010) 279-286. https://doi.org/10.2147/tcrm.s5688

K. Tzogani, M. Straube, U. Hoppe, P. Kiely, G. O’Dea, H. Enzmann, P. Salmon, T. Salmonson, F. Pignatti. The European Medicines Agency approval of 5-aminolaevulinic acid (Ameluz) for the treatment of actinic keratosis of mild to moderate intensity on the face and scalp: Summary of the scientific assessment of the Committee for Medicinal Products for Human Us. Journal of Dermatological Treatment 25 (2014) 371-374. https://doi.org/10.3109/09546634.2013.789474

S.S. Legha. Vincristine Neurotoxicity: Pathophysiology and Management. Medical Toxicology 1 (1986) 421-427. https://doi.org/10.1007/BF03259853

J.E. Frampton. Liposomal Irinotecan: A Review in Metastatic Pancreatic Adenocarcinoma. Drugs 80 (2020) 1007-1018. https://doi.org/10.1007/s40265-020-01336-6

Clinical studies. https://clinicaltrials.gov/search?cond=Diffuse Intrinsic Pontine Glioma Accessed on 20/10/2023.

留言 (0)

沒有登入
gif