Supremacy of nanoparticles in the therapy of chronic myelogenous leukemia

D. Findakly, W. Arslan, D. Findakly. Clinical features and outcomes of patients with chronic myeloid leukemia presenting with isolated thrombocytosis: a systematic review and a case from our institution. Cureus 12 (2020). https://doi.org/10.7759/cureus.8788.

E.H. Powsner, J.C. Harris, E.S. Day. Biomimetic nanoparticles for the treatment of hematologic mali-g¬nancies. Advanced NanoBiomed Research 1 (2021) 2000047. https://doi.org/10.1002/anbr.202000047.

J. Wang, L. Sheng, Y. Lai, Z. Xu. An overview on therapeutic efficacy and challenges of nanoparticles in blood cancer therapy. Journal of King Saud University-Science 34 (2022) 102182. https://doi.org/10.1016/j.jksus.2022.102182.

D. Vetrie, G.V. Helgason, M. Copland. The leukaemia stem cell: similarities, differences and clinical prospects in CML and AML. Nature Reviews Cancer 20 (2020) 158-173. https://doi.org/10.1038/s41568-019-0230-9.

J.R. McWHIRTER, D.L. Galasso, J.Y. Wang. A coiled-coil oligomerization domain of Bcr is essential for the transforming function of Bcr-Abl oncoproteins. Molecular and Cellular Biology 13 (1993) 7587-7595. https://doi.org/10.1128/mcb.13.12.7587-7595.1993.

Y. Ghosn, M.H. Kamareddine, A. Tawk, C. Elia, A. El Mahmoud, K. Terro, N. El Harake, B. El-Baba, J. Makdessi, S. Farhat. Inorganic nanoparticles as drug delivery systems and their potential role in the treatment of chronic myelogenous leukaemia. Technology in Cancer Research & Treatment 18 (2019) 1533033819853241. https://doi.org/10.1177/1533033819853.

Y. Zhang, M. Li, X. Gao, Y. Chen, T. Liu. Nanotechnology in cancer diagnosis: progress, challenges and opportunities. Journal of Hematology & Oncology 12 (2019) 1-13. https://doi.org/10.1186/s13045-019-0833-3.

P. Sharmiladevi, K. Girigoswami, V. Haribabu, A. Girigoswami. Nano-enabled theranostics for cancer. Materials Advances 2 (2021) 2876-2891. https://doi.org/10.1039/D1MA00069A.

S.K. Metkar, K. Girigoswami. Diagnostic biosensors in medicine–a review. Biocatalysis and Agricultural Biotechnology 17 (2019) 271-283. https://doi.org/10.1016/j.bcab.2018.11.029.

N. Akhtar, S.K. Metkar, A. Girigoswami, K. Girigoswami. ZnO nanoflower based sensitive nano-biosensor for amyloid detection. Materials Science and Engineering C 78 (2017) 960-968. https://doi.org/j.msec.2017.04.118.

R.K. Satvekar. Electrochemical nanobiosensors perspectives for COVID 19 pandemic. Journal of Electrochemical Science and Engineering 12 (2022) 25-35. https://doi.org/10.5599/jese.1116.

A.K. Sari, Y.W. Hartati, S. Gaffar, I. Anshori, D. Hidayat, H.L. Wiraswati. The optimization of an electrochemical aptasensor to detect RBD protein S SARS-CoV-2 as a biomarker of COVID-19 using screen-printed carbon electrode/AuNP. Journal of Electrochemical Science and Engineering 12 (2022) 219-235. https://doi.org/10.5599/jese.1206.

S. Chatterjee, K. Harini, A. Girigoswami, M. Nag, D. Lahiri, K. Girigoswami. Nanodecoys: A Quintessential Candidate to Augment Theranostic Applications for a Plethora of Diseases. Pharmaceutics 15 (2022) 73. https://doi.org/10.3390/pharmaceutics15010073.

G. Amsaveni, A.S. Farook, V. Haribabu, R. Murugesan, A. Girigoswami. Engineered multifunctional nanoparticles for DLA cancer cells targeting, sorting, MR imaging and drug delivery. Advanced Science, Engineering and Medicine 5 (2013) 1340-1348. https://doi.org/10.1166/asem.2013.1425.

M. Ozdal, S. Gurkok. Recent advances in nanoparticles as antibacterial agent. ADMET and DMPK 10 (2022) 115-129. https://doi.org/10.5599/admet.1172.

A. Girigoswami, W. Yassine, P. Sharmiladevi, V. Haribabu, K. Girigoswami. Camouflaged nanosilver with excitation wavelength dependent high quantum yield for targeted theranostic. Scientific Reports 8 (2018) 16459. https://doi.org/10.1038/s41598-018-34843-4.

R. Sakthi Devi, A. Girigoswami, M. Siddharth, K. Girigoswami. Applications of gold and silver nanoparticles in theranostics. Applied Biochemistry and Biotechnology 194 (2022) 4187-4219. https://doi.org/10.1007/s12010-022-03963-z.

P. Pallavi, P. Sharmiladevi, V. Haribabu, K. Girigoswami, A. Girigoswami. A Nano Approach to Formulate Photosensitizers for Photodynamic Therapy. Current Nanoscience 18 (2022) 675-689. https://doi.org/10.2174/1573413718666211222162041.

D. Balasubramanian, A. Girigoswami, K. Girigoswami. Nano resveratrol and its anticancer activity. Current Applied Science and Technology 23(3) (2023). https://doi.org/10.55003/cast.2022.03.23.010.

D. Balasubramanian, A. Girigoswami, K. Girigoswami. Antimicrobial, Pesticidal and Food Preservative Applications of Lemongrass Oil Nanoemulsion: A Mini-Review. Recent Advances in Food Nutrition & Agriculture 13 (2022) 51-58. https://doi.org/10.2174/2212798412666220527154707.

S. Staroverov, S. Kozlov, A. Fomin, K. Gabalov, V. Khanadeev, D. Soldatov, I. Domnitsky, L. Dykman, S.V. Akchurin, O. Guliy. Synthesis of silymarin− selenium nanoparticle conjugate and examination of its biological activity in vitro. ADMET and DMPK 9 (2021) 255-266. https://doi.org/10.5599/admet.1023.

B. Deepika, A. Gopikrishna, A. Girigoswami, M.N. Banu, K. Girigoswami. Applications of Nanoscaffolds in Tissue Engineering. Current Pharmacology Reports 8 (2022) 171-187. https://doi.org/10.1007/s40495-022-00284-x.

P. Gowtham, P. Pallavi, K. Harini, K. Girigoswami, A. Girigoswami. Hydrogelated Virus Nanoparticles in Tissue Engineering. Current Nanoscience 19 (2023) 258-269. https://doi.org/10.2174/1573413718666220520094933.

P. Gowtham, K. Girigoswami, P. Pallavi, K. Harini, I. Gurubharath, A. Girigoswami. Alginate-Derivative Encapsulated Carbon Coated Manganese-Ferrite Nanodots for Multimodal Medical Imaging. Pharmaceutics 14 (2022) 2550. https://doi.org/10.3390/pharmaceutics14122550.

V. Haribabu, P. Sharmiladevi, N. Akhtar, A.S. Farook, K. Girigoswami, A. Girigoswami. Label free ultrasmall fluoromagnetic ferrite-clusters for targeted cancer imaging and drug delivery. Current Drug Delivery 16 (2019) 233-241. https://doi.org/10.2174/1567201816666181119112410.

J. Kavya, G. Amsaveni, M. Nagalakshmi, K. Girigoswami, R. Murugesan, A. Girigoswami. Silver nanoparticles induced lowering of BCl2/Bax causes Dalton's Lymphoma tumour cell death in mice. Journal of Bionanoscience 7 (2013) 276-281. https://doi.org/10.1166/jbns.2013.1135.

S. Kulkarni, A. Pandey, S. Mutalik. Heterogeneous surface-modified nanoplatforms for the targeted therapy of haematological malignancies. Drug Discovery Today 25 (2020) 160-167. https://doi.org/10.1016/j.drudis.2019.10.001.

V. Dutta, R. Verma, C. Gopalkrishnan, M.-H. Yuan, K.M. Batoo, R. Jayavel, A. Chauhan, K.-Y.A. Lin, R. Balasubramani, S. Ghotekar. Bio-inspired synthesis of carbon-based nanomaterials and their potential environmental applications: A state-of-the-art review. Inorganics 10 (2022) 169. https://doi.org/10.3390/inorganics10100169.

A. Hochhaus, S. Saussele, G. Rosti, F.-X. Mahon, J.J. Janssen, H. Hjorth-Hansen, J. Richter, C. Buske. Chronic myeloid leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Annals of Oncology 28 (2017) iv41-iv51. https://doi.org/10.1093/annonc/mdx219.

F.-X. Mahon, F. Belloc, V. Lagarde, C. Chollet, F. Moreau-Gaudry, J. Reiffers, J.M. Goldman, J.V. Melo. MDR1 gene overexpression confers resistance to imatinib mesylate in leukemia cell line models. Blood, The Journal of the American Society of Hematology 101 (2003) 2368-2373. https://doi.org/10.1182/blood.V101.6.2368.

B.-R. Oh, N.-T. Huang, W. Chen, J.H. Seo, P. Chen, T.T. Cornell, T.P. Shanley, J. Fu, K. Kurabayashi. Integrated nanoplasmonic sensing for cellular functional immunoanalysis using human blood. ACS Nano 8 (2014) 2667-2676. https://doi.org/10.1021/nn406370u.

G. Lentini, E. Fazio, F. Calabrese, L.M. De Plano, M. Puliafico, D. Franco, M.S. Nicolò, S. Carnazza, S. Trusso, A. Allegra. Phage–AgNPs complex as SERS probe for U937 cell identification. Biosensors and Bioelectronics 74 (2015) 398-405. https://doi.org/10.1016/j.bios.2015.05.073.

X. Chen, J. Zhou, X. Yue, S. Wang, B. Yu, Y. Luo, X. Huang. Selective bio-labeling and induced apoptosis of hematopoietic cancer cells using dual-functional polyethylenimine-caged platinum nanoclusters. Biochemical and Biophysical Research Communications 503 (2018) 1465-1470. https://doi.org/10.1016/j.bbrc.2018.07.064.

T. Limongi, F. Susa, V. Cauda. Nanoparticles for hematologic diseases detection and treatment. Hematology & Medical Oncology 4 (2019). https://doi.org/10.15761/hmo.1000183.

S. Dilruba, G.V. Kalayda. Platinum-based drugs: past, present and future. Cancer Chemotherapy and Pharmacology 77 (2016) 1103-1124. https://doi.org/10.1007/s00280-016-2976-z.

P. Pallavi, K. Harini, S. Crowder, D. Ghosh, P. Gowtham, K. Girigoswami, A. Girigoswami. Rhodamine-Conjugated Anti-Stokes Gold Nanoparticles with Higher ROS Quantum Yield as Theranostic Probe to Arrest Cancer and MDR Bacteria. Applied Biochemistry and Biotechnology (2023). https://doi.org/10.1007/s12010-023-04475-0.

X. Huang, H.M. Mahmudul, Z. Li, X. Deng, X. Su, Z. Xiao, L. Zhao, T. Liu, H. Li. Noble metal nanomaterials for the diagnosis and treatment of hematological malignancies. Frontiers in Bioscience-Landmark 27 (2022) 40. https://doi.org/10.31083/j.fbl2702040.

G. Soni, K.S. Yadav. Applications of nanoparticles in treatment and diagnosis of leukemia. Materials Science and Engineering C 47 (2015) 156-164. https://doi.org/10.1016/j.msec.2014.10.043.

O.S. Muddineti, B. Ghosh, S. Biswas. Current trends in using polymer coated gold nanoparticles for cancer therapy. International Journal of Pharmaceutics 484 (2015) 252-267. https://doi.org/10.1016/j.ijpharm.2015.02.038.

L. Huang, J. Huang, J. Huang, H. Xue, Z. Liang, J. Wu, C. Chen. Nanomedicine–a promising therapy for hematological malignancies. Biomaterials Science 8 (2020) 2376-2393. https://doi.org/10.1039/D0BM00129E.

R. Tietze, J. Zaloga, H. Unterweger, S. Lyer, R.P. Friedrich, C. Janko, M. Pöttler, S. Dürr, C. Alexiou. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochemical and Biophysical Research Communications 468 (2015) 463-470. https://doi.org/10.1016/j.bbrc.2015.08.022.

F. Ali, S.B. Khan, T. Kamal, K.A. Alamry, A.M. Asiri. Chitosan-titanium oxide fibers supported zero-valent nanoparticles: Highly efficient and easily retrievable catalyst for the removal of organic pollutants. Scientific Reports 8 (2018) 6260. https://doi.org/10.1038/s41598-018-24311-4.

M. Mineo, S.H. Garfield, S. Taverna, A. Flugy, G. De Leo, R. Alessandro, E.C. Kohn. Exosomes released by K562 chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion. Angiogenesis 15 (2012) 33-45. https://doi.org/10.1007/s10456-011-9241-1.

C. Roma-Rodrigues, A.R. Fernandes, P.V. Baptista. Counteracting the effect of leukemia exosomes by antiangiogenic gold nanoparticles. International Journal of Nanomedicine 2019:14 (2019) 6843-6854. https://doi.org/10.2147/IJN.S215711.

A.Y. Elderdery, B. Alzahrani, S.M. Hamza, G. Mostafa-Hedeab, P.L. Mok, S.K. Subbiah. CuO-TiO2-Chitosan-Berbamine Nanocomposites Induce Apoptosis through the Mitochondrial Pathway with the Expression of P53, BAX, and BCL-2 in the Human K562 Cancer Cell Line. Bioinorganic Chemistry and Applications (2022) 9602725. https://doi.org/10.1155/2022/9602725.

S.K.R. Adena, M. Upadhyay, H. Vardhan, B. Mishra. Gold nanoparticles for sustained antileukemia drug release: Development, optimization and evaluation by quality-by-design approach. Nanomedicine 14 (2019) 851. https://doi.org/10.2217/nnm-2018-0306.

S.A. Alsagaby, R. Vijayakumar, M. Premanathan, S. Mickymaray, W. Alturaiki, R.S. Al-Baradie, S. AlGhamdi, M.A. Aziz, F.A. Alhumaydhi, F.A. Alzahrani. Transcriptomics-based characterization of the toxicity of ZnO nanoparticles against chronic myeloid leukemia cells. International Journal of Nanomedicine 2020:15 (2020) 7901-7921. https://doi.org/10.2147/IJN.S261636.

C. Amgoth, R. Santhosh, T. Malavath, A. Singh, B. Murali, G. Tang. Solvent‐Assisted [(Glycine)‐(MP‐SiO2NPs)] Aggregate for Drug Loading and Cancer Therapy. Chemistry Select 5 (2020) 8221-8232. https://doi.org/10.1002/slct.202001905.

H.M. Dizman, G.O. Eroglu, S.E. Kuruca, N. Arsu. Photochemically prepared monodisperse gold nanoparticles as doxorubicin carrier and its cytotoxicity on leukemia cancer cells. Applied Nanoscience 11 (2021) 309-320. https://doi.org/10.1007/s13204-020-01589-3.

R. Deng, B. Ji, H. Yu, W. Bao, Z. Yang, Y. Yu, Y. Cui, Y. Du, M. Song, S. Liu. Multifunctional gold nanoparticles overcome microRNA regulatory network mediated-multidrug resistant leukemia. Scientific Reports 9 (2019) 5348. https://doi.org/10.1038/s41598-019-41866-y.

L. Kafi-Ahmadi, S. Khademinia, M. Najafzadeh Nansa, A.A. Alemi, M. Mahdavi, A. Poursattar Marjani. Co-precipitation synthesis, characterization of CoFe2O4 nanomaterial and evaluation of its toxicity behavior on human leukemia cancer K562 cell line. Journal of the Chilean Chemical Society 65 (2020) 4845-4848. http://dx.doi.org/10.4067/S0717-97072020000204845

L. Fan, C. Liu, A. Hu, J. Liang, F. Li, Y. Xiong, C.-F. Mu. Dual oligopeptides modification mediates arsenic trioxide containing nanoparticles to eliminate primitive chronic myeloid leukemia cells inside bone marrow niches. International Journal of Pharmaceutics 579 (2020) 119179. https://doi.org/10.1016/j.ijpharm.2020.119179.

S. Wang, X. Liu, S. Wang, L. Ouyang, H. Li, J. Ding, G. Deng, W. Zhou. Imatinib co-loaded targeted realgar nanocrystal for synergistic therapy of chronic myeloid leukemia. Journal of Controlled Release 338 (2021) 190-200. https://doi.org/10.1016/j.jconrel.2021.08.035.

T. Wang, T. Wen, H. Li, B. Han, S. Hao, C. Wang, Q. Ma, J. Meng, J. Liu, H. Xu. Arsenic sulfide nanoformulation induces erythroid differentiation in chronic myeloid leukemia cells through degradation of BCR-ABL. International Journal of Nanomedicine (2019) 5581-5594. https://doi.org/10.2147/IJN.S207298.

A.-M. Yousefi, A. Safaroghli-Azar, Z. Fakhroueian, D. Bashash. ZnO/CNT@ Fe3O4 induces ROS-mediated apoptosis in chronic myeloid leukemia (CML) cells: an emerging prospective for nanoparticles in leukemia treatment. Artificial Cells, Nanomedicine and Biotechnology 48 (2020) 735-745. https://doi.org/10.1080/21691401.2020.1748885.

Z. Kiani, H. Aramjoo, E. Chamani, M. Siami-Aliabad, S. Mortazavi-Derazkola. In vitro cytotoxicity against K562 tumor cell line, antibacterial, antioxidant, antifungal and catalytic activities of biosynthesized silver nanoparticles using Sophora pachycarpa extract. Arabian Journal of Chemistry 15 (2022) 103677. https://doi.org/10.1016/j.arabjc.2021.103677.

T. Wen, A. Yang, T. Wang, M. Jia, X. Lai, J. Meng, J. Liu, B. Han, H. Xu. Ultra-small platinum nanoparticles on gold nanorods induced intracellular ROS fluctuation to drive megakaryocytic differentiation of leukemia cells. Biomaterials Science 8 (2020) 6204-6211. https://doi.org/10.1039/D0BM01547D.

L. Caldemeyer, M. Dugan, J. Edwards, L. Akard. Long-term side effects of tyrosine kinase inhibitors in chronic myeloid leukemia. Current Hematologic Malignancy Reports 11 (2016) 71-79. https://doi.org/10.1007/s11899-016-0309-2.

G. Vlahovic, J. Crawford. Activation of tyrosine kinases in cancer. The Oncologist 8 (2003) 531-538. https://doi.org/10.1634/theoncologist.8-6-531.

C.-D. Kang, S.-D. Yoo, B.-W. Hwang, K.-W. Kim, D.-W. Kim, C.-M. Kim, S.-H. Kim, B.-S. Chung. The inhibition of ERK/MAPK not the activation of JNK/SAPK is primarily required to induce apoptosis in chronic myelogenous leukemic K562 cells. Leukemia Research 24 (2000) 527-534. https://doi.org/10.1016/S0145-2126(00)00010-2.

A.M. Pendergast, L.A. Quilliam, L.D. Cripe, C.H. Bassing, Z. Dai, N. Li, A. Batzer, K.M. Rabun, C.J. Der, J. Schlessinger. BCR-ABL-induced oncogenesis is mediated by direct interaction with the SH2 domain of the GRB-2 adaptor protein. Cell 75 (1993) 175-185. https://doi.org/10.1016/S0092-8674(05)80094-7.

C. Boni, C. Sorio. Current views on the interplay between tyrosine kinases and phosphatases in Chronic Myeloid Leukemia. Cancers 13 (2021) 2311. https://doi.org/10.3390/cancers13102311.

T. Skorski, P. Kanakaraj, M. Nieborowska-Skorska, M.Z. Ratajczak, S.-C. Wen, G. Zon, A.M. Gewirtz, B. Perussia, B. Calabretta. Phosphatidylinositol-3 kinase activity is regulated by BCR/ABL and is required for the growth of Philadelphia chromosome-positive cells. Blood 86(2) (1995) 726–736. https://doi.org/10.1182/blood.V86.2.726.bloodjournal862726.

A. Zinger, G. Baudo, T. Naoi, F. Giordano, S. Lenna, M. Massaro, A. Ewing, H.R. Kim, E. Tasciotti, J.T. Yustein. Reproducible and characterized method for ponatinib encapsulation into biomimetic lipid nanoparticles as a platform for multi-tyrosine kinase-targeted therapy. ACS Applied Bio Materials 3 (2020) 6737-6745. https://doi.org/10.1021/acsabm.0c00685.

P. Dehghankelishadi, P. Badiee, M.F. Maritz, N. Dmochowska, B. Thierry. Bosutinib high density lipoprotein nanoformulation has potent tumour radiosensitisation effects. Journal of Nanobiotechnology 21 (2023) 102. https://doi.org/10.1186/s12951-023-01848-9.

A.E. El‐Sisi, S.S. Sokkar, H.A. Ibrahim, M.F. Hamed, S.E. Abu‐Risha. Targeting MDR‐1 gene expression, BAX/BCL2, caspase‐3, and Ki‐67 by nanoencapsulated imatinib and hesperidin to enhance anticancer activity and ameliorate cardiotoxicity. Fundamental & Clinical Pharmacology 34 (2020) 458-475. https://doi.org/10.1111/fcp.12549.

M. Antonios Tawk, M. Carlos Elia, M. Walid Alam, M. Joseph Makdessi, M. Said Farhat. Organic Nanoparticles as Drug Delivery Systems and Their Potential Role in the Treatment of Chronic Myeloid Leukemia. Technology in Cancer Research & Treatment 18 (2019) 1533033819853241. https://doi.org/10.1177/1533033819879902.

R. Misra, S.K. Sahoo. Intracellular trafficking of nuclear localization signal conjugated nanoparticles for cancer therapy. European Journal of Pharmaceutical Sciences 39 (2010) 152-163. https://doi.org/10.1016/j.ejps.2009.11.010.

W. Xia, Z. Tao, B. Zhu, W. Zhang, C. Liu, S. Chen, M. Song. Targeted delivery of drugs and genes using polymer nanocarriers for cancer therapy. International Journal of Molecular Sciences 22 (2021) 9118. https://doi.org/10.3390/ijms22179118.

E. Abbasi, S.F. Aval, A. Akbarzadeh, M. Milani, H.T. Nasrabadi, S.W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl. Dendrimers: synthesis, applications, and properties. Nanoscale Research Letters 9 (2014) 247. https://doi.org/10.1186/1556-276X-9-247.

V. Haribabu, A.S. Farook, N. Goswami, R. Murugesan, A. Girigoswami. Optimized Mn‐doped iron oxide nanoparticles entrapped in dendrimer for dual contrasting role in MRI. Journal of Biomedical Materials Research B 104 (2016) 817-824. https://doi.org/10.1002/jbm.b.33550.

A.A. Abdellatif, R. Hennig, K. Pollinger, H.M. Tawfeek, A. Bouazzaoui, A. Goepferich. Fluorescent nanoparticles coated with a somatostatin analogue target blood monocyte for efficient leukaemia treatment. Pharmaceutical Research 37 (2020) 217. https://doi.org/10.1007/s11095-020-02938-1.

G. Asgaritarghi, S.S.M. Farsani, D. Sadeghizadeh, M. Sadeghizadeh. Anti-Cancer Role of Dendrosomal Nano Solanine in Chronic Myelogenous Leukemia Cell Line through Attenuation of PI3K/AKT/mTOR Signaling Pathway and Inhibition of hTERT Expression. Current Molecular Pharmacology 16 (2023) 592-608. https://doi.org/10.2174/1874467215666220516143155.

K. Amerigos Daddy JC, M. Chen, F. Raza, Y. Xiao, Z. Su, Q. Ping. Co-encapsulation of mitoxantrone and β-elemene in solid lipid nanoparticles to overcome multidrug resistance in leukemia. Pharmaceutics 12 (2020) 191. https://doi.org/10.3390/pharmaceutics12020191.

P. Ernst, A.T. Press, M. Fischer, V. Günther, C. Gräfe, J.H. Clement, T. Ernst, U.S. Schubert, J. Wotschadlo, M. Lehmann. Polymethine dye-functionalized nanoparticles for targeting CML stem cells. Molecular Therapy-Oncolytics 18 (2020) 372-381. https://doi.org/10.1016/j.omto.2020.07.007.

L. Fu, F. Zou, Q. Liu, B. Wang, J. Wang, H. Liang, X. Liang, J. Liu, J. Shi, Q. Liu. An ultra-long circulating nanoparticle for reviving a highly selective BCR-ABL inhibitor in long-term effective and safe treatment of chronic myeloid leukemia. Nanomedicine: Nanotechnology, Biology and Medicine 29 (2020) 102283. https://doi.org/10.1016/j.nano.2020.102283.

W. Guo, X. Liu, L. Ye, J. Liu, K. Larwubah, G. Meng, W. Shen, X. Ying, J. Zhu, S. Yang. The Effect of Polyhydroxy Fullerene Derivative on Human Myeloid Leukemia K562 Cells. Materials 15 (2022) 1349. https://doi.org/10.3390/ma15041349.

M. Houshmand, F. Garello, R. Stefania, V. Gaidano, A. Cignetti, M. Spinelli, C. Fava, M. Nikougoftar Zarif, S. Galimberti, E. Pungolino. Targeting chronic myeloid leukemia stem/progenitor cells using venetoclax-loaded immunoliposome. Cancers 13 (2021) 1311. https://doi.org/10.3390/cancers13061311.

G. Jiang, Z. Huang, Y. Yuan, K. Tao, W. Feng. Intracellular delivery of anti-BCR/ABL antibody by PLGA nanoparticles suppresses the oncogenesis of chronic myeloid leukemia cells. Journal of Hematology & Oncology 14 (2021) 139 . https://doi.org/10.1186/s13045-021-01150-x.

N. Jyotsana, A. Sharma, A. Chaturvedi, R. Budida, M. Scherr, F. Kuchenbauer, R. Lindner, F. Noyan, K.-W. Sühs, M. Stangel. Lipid nanoparticle-mediated siRNA delivery for safe targeting of human CML in vivo. Annals of Hematology 98 (2019) 1905-1918. https://doi.org/10.1007/s00277-019-03713-y.

H. Liang, F. Zou, L. Fu, Q. Liu, B. Wang, X. Liang, J. Liu, Q. Liu. PEG-Bottlebrush Stabilizer-Based Worm-like Nanocrystal Micelles with Long-Circulating and Controlled Release for Delivery of a BCR-ABL Inhibitor against Chronic Myeloid Leukemia (CML). Pharmaceutics 14 (2022) 1662. https://doi.org/10.3390/pharmaceutics14081662.

B. Ma, F. Niu, X. Qu, W. He, C. Feng, S. Wang, Z. Ouyang, J. Yan, Y. Wen, D. Xu. A tetrameric protein scaffold as a nano-carrier of antitumor peptides for cancer therapy. Biomaterials 204 (2019) 1-12. https://doi.org/10.1016/j.biomaterials.2019.03.004.

F. Palombarini, S. Masciarelli, A. Incocciati, F. Liccardo, E. Di Fabio, A. Iazzetti, G. Fabrizi, F. Fazi, A. Macone, A. Bonamore. Self-assembling ferritin-dendrimer nanoparticles for targeted delivery of nucleic acids to myeloid leukemia cells. Journal of Nanobiotechnology 19 (2021) 172. https://doi.org/10.1186/s12951-021-00921-5.

K. Remant, B. Thapa, J. Valencia‐Serna, S.S. Domun, C. Dimitroff, X. Jiang, H. Uludağ. Cholesterol grafted cationic lipopolymers: Potential siRNA carriers for selective chronic myeloid leukemia therapy. Journal of Biomedical Materials Research A 108 (2020) 565-580. https://doi.org/10.1002/jbm.a.36837.

Y. Shao, W. Luo, Q. Guo, X. Li, Q. Zhang, J. Li. In vitro and in vivo effect of hyaluronic acid modified, doxorubicin and gallic acid co-delivered lipid-polymeric hybrid nano-system for leukemia therapy. Drug design, Development and Therapy 2019:13 (2019) 2043-2055. https://doi.org/10.2147/DDDT.S202818.

L. Zhang, H. Zhu, Y. Gu, X. Wang, P. Wu. Dual drug-loaded PLA nanoparticles bypassing drug resistance for improved leukemia therapy. Journal of Nanoparticle Research 21 (2019) 83. https://doi.org/10.1007/s11051-018-4430-0.

留言 (0)

沒有登入
gif