Frontiers of stem cell engineering for nanotechnology-mediated drug delivery systems

T. Sahu, Y.K. Ratre, S. Chauhan, L.V.K.S. Bhaskar, M.P. Nair, H.K. Verma. Nanotechnology based drug delivery system: Current strategies and emerging therapeutic potential for medical science. Journal of Drug Delivery Science and Technology 63 (2021) 102487. https://doi.org/https://doi.org/10.1016/j.jddst.2021.102487.

A.M. Vargason, A.C. Anselmo, S. Mitragotri. The evolution of commercial drug delivery technologies. Nature Biomedical Engineering 5 (2021) 951-967. https://doi.org/10.1038/s41551-021-00698-w.

J. Rezaie, V. Nejati, M. Mahmoodi, M. Ahmadi. Mesenchymal stem cells derived extracellular vesicles: A promising nanomedicine for drug delivery system. Biochemical Pharmacology 203 (2022) 115167. https://doi.org/10.1016/j.bcp.2022.115167.

J.F. Loring, T.C. McDevitt, S.P. Palecek, D.V. Schaffer, P.W. Zandstra, R.M. Nerem. A global assessment of stem cell engineering. Tissue Eng A 20 (2014) 2575-2589. https://doi.org/10.1089/ten.TEA.2013.0468.

Y. Dong, X. Wu, X. Chen, P. Zhou, F. Xu, W. Liang. Nanotechnology shaping stem cell therapy: Recent advances, application, challenges, and future outlook. Biomedicine and Pharmacotherapy 137 (2021) 111236. https://doi.org/https://doi.org/10.1016/j.biopha.2021.111236.

K.D. Deb, M. Griffith, E.D. Muinck, M. Rafat. Nanotechnology in stem cells research: advances and applications. Frontiers in Bioscience-Landmark 17 (2012) 1747-1760. https://doi.org/10.2741/4016.

S. Yesilkir-Baydar. Investigation of the effect of metallic and biogenic nanoparticles on somatic and stem cells for the purpose of using for bioengineering applications. Bioengineering Department, Yildiz Technical University, Istanbul, 2016, pp. 180.

S. Yesilkir-Baydar, B. Melahat, A. Adil, A. Emrah Şefik. Synthesis and Characterization of TiO2, Ag and TiO2@Ag Nanoparticles via Assessing the Effects on Stem Cells in vitro. Afyon Kocatepe Üniversitesi Fen Ve Mühendislik Bilimleri Dergisi 22(3) (2022) 454-464. https://dergipark.org.tr/en/pub/akufemubid/issue/71191/1030781.

S. Ponpandian, S. Shenbagamoorthy, D.N.P. Sudarmani, Nanotechnology-Based Stem Cell Therapy: Current Status and Perspectives, in Possibilities and Limitations in Current Translational Stem Cell Research, K. Diana (Ed.), IntechOpen, Rijeka, Croatia, 2023, Ch. 5. https://doi.org/10.5772/intechopen.109275.

Y. Jin, S. Li, Q. Yu, T. Chen, D. Liu. Application of stem cells in regeneration medicine. MedComm (2020) 4 (2023) e291. https://doi.org/10.1002/mco2.291.

T.O. Peulen, K.J. Wilkinson. Diffusion of nanoparticles in a biofilm. Environmental Science & Technology 45 (2011) 3367-3373. https://doi.org/10.1021/es103450g.

R.A. Imam, A.A. Rizk. Efficacy of erythropoietin-pretreated mesenchymal stem cells in murine burn wound healing: possible in vivo transdifferentiation into keratinocytes. Folia Morphologiica 78 (2019) 798-808. https://doi.org/10.5603/FM.a2019.0038.

S. Kim, K. Kwon, I.C. Kwon, K. Park, Nanotechnology in Drug Delivery: Past, Present, and Future, in Nanotechnology in Drug Delivery, M.M. de Villiers, P. Aramwit, G.S. Kwon (Eds.), Springer New York, New York, NY, 2009, p. 581-596. https://doi.org/10.1007/978-0-387-77668-2_19.

C. Vissers, G.L. Ming, H. Song. Nanoparticle technology and stem cell therapy team up against neurodegenerative disorders. Advanced Drug Delivery Reviews 148 (2019) 239-251. https://doi.org/10.1016/j.addr.2019.02.007.

S. Bayda, M. Adeel, T. Tuccinardi, M. Cordani, F. Rizzolio. The History of Nanoscience and Nanotechnology: From Chemical-Physical Applications to Nanomedicine. Molecules 25 (2019). https://doi.org/10.3390/molecules25010112.

A. Hasan, M. Morshed, A. Memic, S. Hassan, T.J. Webster, H.E. Marei. Nanoparticles in tissue engineering: applications, challenges and prospects. Internationa Journal of Nanomedicine 13 (2018) 5637-5655. https://doi.org/10.2147/ijn.s153758.

R. Pool. Clusters: Strange Morsels of Matter: When metals or semiconductors are shrunk down to clumps only 10 or 100 atoms in size, they become a "totally new class of materials" with potentially valuable applications. Science 248 (1990) 1186-1188. https://doi.org/10.1126/science.248.4960.1186.

A. Schreiber, F. Witte, 13 - Immune response to nanobiomaterials, in Nanobiomaterials Science, Development and Evaluation, M. Razavi, A. Thakor (Eds.), Woodhead Publishing, 2017, p. 249-260. https://doi.org/https://doi.org/10.1016/B978-0-08-100963-5.00013-6.

Nanotechnology Global Market Value, https://www.statista.com/statistics/1073886/global-market-value-nanotechnology/. (Accessed 13 August 2023)

A.S. Zahr, M.V. Pishko, Nanotechnology for Cancer Chemotherapy, in Nanotechnology in Drug Delivery, M.M. de Villiers, P. Aramwit, G.S. Kwon (Eds.), Springer New York, New York, NY, 2009, p. 491-518. https://doi.org/10.1007/978-0-387-77668-2_16.

L. Jia, P. Zhang, H. Sun, Y. Dai, S. Liang, X. Bai, L. Feng. Optimization of Nanoparticles for Smart Drug Delivery: A Review. Nanomaterials (Basel) 11 (2021). https://doi.org/10.3390/nano11112790.

M. Chamundeeswari, J. Jeslin, M.L. Verma. Nanocarriers for drug delivery applications. Environmental Chemistry Letters 17 (2019) 849-865. https://doi.org/10.1007/s10311-018-00841-1.

Ö. Marangoz, O. Yavuz. Nano-drug delivery systems and their toxicological assessment. Türk Hijyen ve Deneysel Biyoloji Dergisi 77 (2020) 509-526. https://doi.org/10.5505/TurkHijyen.2020.37790. (in Turkish)

H.H. Wu, Y. Zhou, Y. Tabata, J.Q. Gao. Mesenchymal stem cell-based drug delivery strategy: from cells to biomimetic. Journal of Controlled Release 294 (2019) 102-113. https://doi.org/10.1016/j.jconrel.2018.12.019.

L. Nehru, G.D. Kandasamy, V. Sekar, M.A. Alshehri, C. Panneerselvam, A. Alasmari, P. Kathirvel. Green synthesis of ZnO-NPs using endophytic fungal extract of Xylaria arbuscula from Blumea axillaris and its biological applications. Artif Cells Nanomed Biotechnol 51 (2023) 318-333. https://doi.org/10.1080/21691401.2023.2232654.

S.S. Salem, A. Fouda. Green Synthesis of Metallic Nanoparticles and Their Prospective Biotechnological Applications: an Overview. Biological Trace Element Research 199 (2021) 344-370. https://doi.org/10.1007/s12011-020-02138-3.

R.D. Wouters, P.C.L. Muraro, D.M. Druzian, A.R. Viana, E. de Oliveira Pinto, J.K.L. da Silva, B.S. Vizzotto, Y.P.M. Ruiz, A. Galembeck, G. Pavoski, D.C.R. Espinosa, W.L. da Silva. Zinc oxide nanoparticles: Biosynthesis, characterization, biological activity and photocatalytic degradation for tartrazine yellow dye. Journal of Molecular Liquids 371 (2023) 121090. https://doi.org/https://doi.org/10.1016/j.molliq.2022.121090.

N. Senthilkumar, E. Nandhakumar, P. Priya, D. Soni, M. Vimalan, I. Vetha Potheher. Synthesis of ZnO nanoparticles using leaf extract of Tectona grandis (L.) and their anti-bacterial, anti-arthritic, anti-oxidant and in vitro cytotoxicity activities. New Journal of Chemistry 41 (2017) 10347-10356. https://doi.org/10.1039/C7NJ02664A.

L. Shahanaz, A.S.S. Shalini. Zinc oxide nanoparticles synthesized using Oldenlandia Umbellata leaf extract and their photocatalytic and biological characteristics. Journal of the Indian Chemical Society 100 (2023) 100917. https://doi.org/https://doi.org/10.1016/j.jics.2023.100917.

R. Abbai, R. Mathiyalagan, J. Markus, Y.J. Kim, C. Wang, P. Singh, S. Ahn, A. Farh Mel, D.C. Yang. Green synthesis of multifunctional silver and gold nanoparticles from the oriental herbal adaptogen: Siberian ginseng. Internationa Journal of Nanomedicine 11 (2016) 3131-3143. https://doi.org/10.2147/ijn.s108549.

L. Castillo-Henríquez, K. Alfaro-Aguilar, J. Ugalde-Álvarez, L. Vega-Fernández, G. Montes de Oca-Vásquez, J.R. Vega-Baudrit. Green Synthesis of Gold and Silver Nanoparticles from Plant Extracts and Their Possible Applications as Antimicrobial Agents in the Agricultural Area. Nanomaterials (Basel) 10 (2020) 1763. https://doi.org/10.3390/nano10091763.

S. Lal, R. Verma, A. Chauhan, J. Dhatwalia, I. Guleria, S. Ghotekar, S. Thakur, K. Mansi, R. Kumar, A. Kumari, P. Kumar. Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPs from Myrica esculenta fruits extract. Inorganic Chemistry Communications 141 (2022) 109518. https://doi.org/https://doi.org/10.1016/j.inoche.2022.109518.

A. Roy, O. Bulut, S. Some, A.K. Mandal, M.D. Yilmaz. Green synthesis of silver nanoparticles: biomolecule-nanoparticle organizations targeting antimicrobial activity. RSC Advances 9 (2019) 2673-2702. https://doi.org/10.1039/C8RA08982E.

A.M.E. Shafey. Green synthesis of metal and metal oxide nanoparticles from plant leaf extracts and their applications: A review. Green Processing and Synthesis 9 (2020) 304-339. https://doi.org/doi:10.1515/gps-2020-0031.

S. Vijayakumar, B. Vaseeharan, B. Malaikozhundan, M. Shobiya. Laurus nobilis leaf extract mediated green synthesis of ZnO nanoparticles: Characterization and biomedical applications. Biomedicine and Pharmacotherapy 84 (2016) 1213-1222. https://doi.org/10.1016/j.biopha.2016.10.038.

H. Liu, S. Deng, L. Han, Y. Ren, J. Gu, L. He, T. Liu, Z.-x. Yuan. Mesenchymal stem cells, exosomes and exosome-mimics as smart drug carriers for targeted cancer therapy. Colloids and Surfaces B 209 (2022) 112163. https://doi.org/https://doi.org/10.1016/j.colsurfb.2021.112163.

E.A. Kimbrel, R. Lanza. Next-generation stem cells - ushering in a new era of cell-based therapies. Nature Reviews Drug Discovery 19 (2020) 463-479. https://doi.org/10.1038/s41573-020-0064-x.

M. Gharbavi, A. Sharafi, S. Ghanbarzadeh. Mesenchymal Stem Cells: A New Generation of Therapeutic Agents as Vehicles in Gene Therapy. Current Gene Therapy 20 (2020) 269-284. https://doi.org/10.2174/1566523220666200607190339.

D. De, P. Karmakar, D. Bhattacharya. Stem Cell Aging and Regenerative Medicine. Advances in Experimental Medicine and Biology 1326 (2021) 11-37. https://doi.org/10.1007/5584_2020_577.

N. Yousefi, S. Abdollahii, M.A.J. Kouhbanani, A. Hassanzadeh. Induced pluripotent stem cells (iPSCs) as game-changing tools in the treatment of neurodegenerative disease: Mirage or reality? Journal of Cellular Physiology 235 (2020) 9166-9184. https://doi.org/10.1002/jcp.29800.

F. Marofi, G. Vahedi, A. Hasanzadeh, S. Salarinasab, P. Arzhanga, B. Khademi, M. Farshdousti Hagh. Mesenchymal stem cells as the game-changing tools in the treatment of various organs disorders: Mirage or reality? J Cell Physiol 234 (2019) 1268-1288. https://doi.org/10.1002/jcp.27152.

S. Yesilkir-Baydar, O.N. Oztel, R. Cakir-Koc, A. Candayan, Evaluation techniques, in Nanobiomaterials Science, Development and Evaluation, M. Razavi, A. Thakor (Eds.), Woodhead Publishing 2017, p. 211-232. https://doi.org/https://doi.org/10.1016/B978-0-08-100963-5.00011-2.

S. Yanbakan. Hücresel tedavi ürünlerinin klinik kullanım alanları. Journal of Clinical and Experimental Investigations 6 (2015) 202-208. https://doi.org/https://dergipark.org.tr/tr/pub/jcei/issue/9907/122666.

O. Lindvall, Z. Kokaia. Stem cells for the treatment of neurological disorders. Nature 441 (2006) 1094-1096. https://doi.org/10.1038/nature04960.

L. Labusca, D.D. Herea, K. Mashayekhi. Stem cells as delivery vehicles for regenerative medicine-challenges and perspectives. World Journal of Stem Cells 10 (2018) 43-56. https://doi.org/10.4252/wjsc.v10.i5.43.

S. Francois, M. Mouiseddine, B. Allenet-Lepage, J. Voswinkel, L. Douay, M. Benderitter, A. Chapel. Human mesenchymal stem cells provide protection against radiation-induced liver injury by antioxidative process, vasculature protection, hepatocyte differentiation, and trophic effects. BioMed Research Internationa 2013 (2013) 151679. https://doi.org/10.1155/2013/151679.

L. Fan, A. Wei, Z. Gao, X. Mu. Current progress of mesenchymal stem cell membrane-camouflaged nanoparticles for targeted therapy. Biomedicine and Pharmacotherapy 161 (2023) 114451. https://doi.org/10.1016/j.biopha.2023.114451.

D. Chen, X. Liu, X. Lu, J. Tian. Nanoparticle drug delivery systems for synergistic delivery of tumor therapy. Frontiers in Pharmacology 14 (2023) 1111991. https://doi.org/10.3389/fphar.2023.1111991.

L. Pascucci, V. Coccè, A. Bonomi, D. Ami, P. Ceccarelli, E. Ciusani, L. Viganò, A. Locatelli, F. Sisto, S.M. Doglia, E. Parati, M.E. Bernardo, M. Muraca, G. Alessandri, G. Bondiolotti, A. Pessina. Paclitaxel is incorporated by mesenchymal stromal cells and released in exosomes that inhibit in vitro tumor growth: a new approach for drug delivery. Journal of Controlled Release 192 (2014) 262-270. https://doi.org/10.1016/j.jconrel.2014.07.042.

Y. Liu, J. Zhao, J. Jiang, F. Chen, X. Fang. Doxorubicin Delivered Using Nanoparticles Camouflaged with Mesenchymal Stem Cell Membranes to Treat Colon Cancer. International Journal of Nanomedicine 15 (2020) 2873-2884. https://doi.org/10.2147/ijn.s242787.

P.-Y. Lai, R.-Y. Huang, S.-Y. Lin, Y.-H. Lin, C.-W. Chang. Biomimetic stem cell membrane-camouflaged iron oxide nanoparticles for theranostic applications. RSC Advances 5 (2015) 98222-98230. https://doi.org/10.1039/C5RA17447C.

C. Gao, Z. Lin, B. Jurado-Sánchez, X. Lin, Z. Wu, Q. He. Stem Cell Membrane-Coated Nanogels for Highly Efficient In Vivo Tumor Targeted Drug Delivery. Small 12 (2016) 4056-4062. https://doi.org/10.1002/smll.201600624.

S. Suryaprakash, Y.H. Lao, H.Y. Cho, M. Li, H.Y. Ji, D. Shao, H. Hu, C.H. Quek, D. Huang, R.L. Mintz, J.R. Bagó, S.D. Hingtgen, K.B. Lee, K.W. Leong. Engineered Mesenchymal Stem Cell/Nanomedicine Spheroid as an Active Drug Delivery Platform for Combinational Glioblastoma Therapy. Nano Letters 19 (2019) 1701-1705. https://doi.org/10.1021/acs.nanolett.8b04697.

E. Bagheri, K. Abnous, S.A. Farzad, S.M. Taghdisi, M. Ramezani, M. Alibolandi. Targeted doxorubicin-loaded mesenchymal stem cells-derived exosomes as a versatile platform for fighting against colorectal cancer. Life Science 261 (2020) 118369. https://doi.org/10.1016/j.lfs.2020.118369.

C. Yang, Z. Guan, X. Pang, Z. Tan, X. Yang, X. Li, F. Guan. Desialylated Mesenchymal Stem Cells-Derived Extracellular Vesicles Loaded with Doxorubicin for Targeted Inhibition of Hepatocellular Carcinoma. Cells 11 (2022)2642. https://doi.org/10.3390/cells11172642.

E.J. Lee, Y. Choi, H.J. Lee, D.W. Hwang, D.S. Lee. Human neural stem cell-derived extracellular vesicles protect against Parkinson's disease pathologies. Journal of Nanobiotechnology 20 (2022) 198. https://doi.org/10.1186/s12951-022-01356-2.

M. Jafarinia, F. Alsahebfosoul, H. Salehi, N. Eskandari, M. Azimzadeh, M. Mahmoodi, S. Asgary, M. Ganjalikhani Hakemi. Therapeutic effects of extracellular vesicles from human adipose-derived mesenchymal stem cells on chronic experimental autoimmune encephalomyelitis. Journal of Cellular Physiology 235 (2020) 8779-8790. https://doi.org/10.1002/jcp.29721.

T.H. Chung, S.C. Hsu, S.H. Wu, J.K. Hsiao, C.P. Lin, M. Yao, D.M. Huang. Dextran-coated iron oxide nanoparticle-improved therapeutic effects of human mesenchymal stem cells in a mouse model of Parkinson's disease. Nanoscale 10 (2018) 2998-3007. https://doi.org/10.1039/c7nr06976f.

M. Riazifar, M.R. Mohammadi, E.J. Pone, A. Yeri, C. Lässer, A.I. Segaliny, L.L. McIntyre, G.V. Shelke, E. Hutchins, A. Hamamoto, E.N. Calle, R. Crescitelli, W. Liao, V. Pham, Y. Yin, J. Jayaraman, J.R.T. Lakey, C.M. Walsh, K. Van Keuren-Jensen, J. Lotvall, W. Zhao. Stem Cell-Derived Exosomes as Nanotherapeutics for Autoimmune and Neurodegenerative Disorders. ACS Nano 13 (2019) 6670-6688. https://doi.org/10.1021/acsnano.9b01004.

H.E. Marei, A.A. Elnegiry, A. Zaghloul, A. Althani, N. Afifi, A. Abd-Elmaksoud, A. Farag, S. Lashen, S. Rezk, Z. Shouman, C. Cenciarelli, A. Hasan. Nanotubes impregnated human olfactory bulb neural stem cells promote neuronal differentiation in Trimethyltin-induced neurodegeneration rat model. Journal of Cellular Physiology 232 (2017) 3586-3597. https://doi.org/10.1002/jcp.25826.

H. Ren, J. Li, A. Peng, T. Liu, M. Chen, H. Li, X. Wang. Water-Soluble, Alanine-Modified Fullerene C(60) Promotes the Proliferation and Neuronal Differentiation of Neural Stem Cells. International Journal of Molecular Sciences 23 (2022) 5714. https://doi.org/10.3390/ijms23105714.

Y. Kono, J. Takegaki, T. Ohba, K. Matsuda, R. Negoro, S. Fujita, T. Fujita. Magnetization of mesenchymal stem cells using magnetic liposomes enhances their retention and immunomodulatory efficacy in mouse inflamed skeletal muscle. International Journal of Pharmaceutics 596 (2021) 120298. https://doi.org/10.1016/j.ijpharm.2021.120298.

C. Zhang, W. Zhang, D. Zhu, Z. Li, Z. Wang, J. Li, X. Mei, W. Xu, K. Cheng, B. Zhong. Nanoparticles functionalized with stem cell secretome and CXCR4-overexpressing endothelial membrane for targeted osteoporosis therapy. Journal of Nanobiotechnology 20 (2022) 35. https://doi.org/10.1186/s12951-021-01231-6.

Z. Mirza, S. Karim. Nanoparticles-based drug delivery and gene therapy for breast cancer: Recent advancements and future challenges. Seminars in Cancer Biology 69 (2021) 226-237. https://doi.org/10.1016/j.semcancer.2019.10.020.

C. Roma-Rodrigues, L. Rivas-García, P.V. Baptista, A.R. Fernandes. Gene Therapy in Cancer Treatment: Why Go Nano? Pharmaceutics 12 (2020) 233. https://doi.org/10.3390/pharmaceutics12030233.

X. Mu, J. Li, S. Yan, H. Zhang, W. Zhang, F. Zhang, J. Jiang. siRNA Delivery with Stem Cell Membrane-Coated Magnetic Nanoparticles for Imaging-Guided Photothermal Therapy and Gene Therapy. ACS Biomaterials Science & Engineering 4 (2018) 3895-3905. https://doi.org/10.1021/acsbiomaterials.8b00858.

D. Shi, S. Toyonaga, D.G. Anderson. In Vivo RNA Delivery to Hematopoietic Stem and Progenitor Cells via Targeted Lipid Nanoparticles. Nano Letters 23 (2023) 2938-2944. https://doi.org/10.1021/acs.nanolett.3c00304.

N. Ren, N. Liang, M. Dong, Z. Feng, L. Meng, C. Sun, A. Wang, X. Yu, W. Wang, J. Xie, C. Liu, H. Liu. Stem Cell Membrane-Encapsulated Zeolitic Imidazolate Framework-8: A Targeted Nano-Platform for Osteogenic Differentiation. Small 18 (2022) e2202485. https://doi.org/10.1002/smll.202202485.

Z. Feng, Q. Liu, W. Wang, S. Zhang, M. Dong, S. Hu, A. Yin, L. Meng, A. Wang, X. Yu, J. Wang, N. Ren, C. Sun, H. Liu. Reduced graphene oxide-mediated magnetoelectric effect drives neural differentiation of mesenchymal stem cells. Science China Materials 66 (2023) 2504-2512. https://doi.org/10.1007/s40843-022-2390-y.

G. Choe, M. Lee, S. Oh, J.M. Seok, J. Kim, S. Im, S.A. Park, J.Y. Lee. Three-dimensional bioprinting of mesenchymal stem cells using an osteoinductive bioink containing alginate and BMP-2-loaded PLGA nanoparticles for bone tissue engineering. Biomaterials Advances 136 (2022) 212789. https://doi.org/10.1016/j.bioadv.2022.212789.

J. Ding, X. Wang, B. Chen, J. Zhang, J. Xu. Exosomes Derived from Human Bone Marrow Mesenchymal Stem Cells Stimulated by Deferoxamine Accelerate Cutaneous Wound Healing by Promoting Angiogenesis. BioMed Research International 2019 (2019) 9742765. https://doi.org/10.1155/2019/9742765.

L. Luo, J. Tang, K. Nishi, C. Yan, P.U. Dinh, J. Cores, T. Kudo, J. Zhang, T.S. Li, K. Cheng. Fabrication of Synthetic Mesenchymal Stem Cells for the Treatment of Acute Myocardial Infarction in Mice. Circulation Research 120 (2017) 1768-1775. https://doi.org/10.1161/circresaha.116.310374.

J.R. Lee, B.W. Park, J. Kim, Y.W. Choo, H.Y. Kim, J.K. Yoon, H. Kim, J.W. Hwang, M. Kang, S.P. Kwon, S.Y. Song, I.O. Ko, J.A. Park, K. Ban, T. Hyeon, H.J. Park, B.S. Kim. Nanovesicles derived from iron oxide nanoparticles-incorporated mesenchymal stem cells for cardiac repair. Science Advances 6 (2020) eaaz0952. https://doi.org/10.1126/sciadv.aaz0952.

C. Gu, S. Yang, X. Liu, Y. Jin, Y. Yu, L. Lu. A biomimetic adipocyte mesenchymal stem cell membrane-encapsulated drug delivery system for the treatment of rheumatoid arthritis. Nano Research 16 (2023) 11401-11410. https://doi.org/10.1007/s12274-023-5877-6.

N. Olsman, L. Goentoro. There's (still) plenty of room at the bottom. Current Opinion in Biotechnology 54 (2018) 72-79. https://doi.org/https://doi.org/10.1016/j.copbio.2018.01.029.

留言 (0)

沒有登入
gif