In 2023 invasive coronary angiography is preferred to PET myocardial perfusion imaging for the initial work-up of a symptomatic patient with a high coronary artery calcium score

Pu J, Mintz GS, Biro S, et al. Insights into echo-attenuated plaques, echolucent plaques, and plaques with spotty calcification. J Am Coll Cardiol 2014;63:2220‐33. https://doi.org/10.1016/j.jacc.2014.02.576.

Article  PubMed  Google Scholar 

Garcia-Garcia HM, Costa MA, Serruys PW. Imaging of coronary atherosclerosis: intravascular ultrasound. Eur Heart J 2010;31:2456‐69. https://doi.org/10.1093/eurheartj/ehq280.

Article  PubMed  Google Scholar 

Fujii K, Kawakami R, Hirota S. Histopathological validation of optical coherence tomography findings of the coronary arteries. J Cardiol 2018;72:179‐85. https://doi.org/10.1016/j.jjcc.2018.03.003.

Article  PubMed  Google Scholar 

Lawton JS, Tamis -Holland Jacqueline E., Bangalore S, et al. 2021 ACC/AHA/SCAI Guideline for Coronary Artery Revascularization. J Am Coll Cardiol. 2022;79(2):21-129. doi:https://doi.org/10.1016/j.jacc.2021.09.006

Neumann FJ, Sousa-Uva M, Ahlsson A, et al. 2018 ESC/EACTS Guidelines on myocardial revascularization. Eur Heart J 2019;40:87‐165. https://doi.org/10.1093/eurheartj/ehy394.

Article  PubMed  Google Scholar 

Velazquez EJ, Lee KL, Jones RH, et al. Coronary-artery bypass surgery in patients with ischemic cardiomyopathy. N Engl J Med 2016;374:1511‐20. https://doi.org/10.1056/NEJMoa1602001.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Yusuf S, Zucker D, Peduzzi P, Fisher LD, et al. Effect of coronary artery bypass graft surgery on survival: overview of 10-year results from randomised trials by the Coronary Artery Bypass Graft Surgery Trialists Collaboration. Lancet 1994;344:563‐70. https://doi.org/10.1016/S0140-6736(94)91963-1.

Article  CAS  PubMed  Google Scholar 

Eleven-Year Survival in the Veterans Administration Randomized Trial of Coronary Bypass Surgery for Stable Angina. N Engl J Med. 1984;311(21):1333-1339. doi:https://doi.org/10.1056/NEJM198411223112102

LONG-TERM RESULTS OF PROSPECTIVE RANDOMISED STUDY OF CORONARY ARTERY BYPASS SURGERY IN STABLE ANGINA PECTORIS. The Lancet. 1982;320(8309):1173-1180. doi:https://doi.org/10.1016/S0140-6736(82)91200-4

Maron DJ, Hochman JS, Reynolds HR, et al. Initial invasive or conservative strategy for stable coronary disease. N Engl J Med 2020;382:1395‐407. https://doi.org/10.1056/NEJMoa1915922.

Article  PubMed  PubMed Central  Google Scholar 

Hochman JS, Anthopolos R, Reynolds HR, et al. Survival after invasive or conservative management of stable coronary disease. Circulation 2023;147:8‐19. https://doi.org/10.1161/CIRCULATIONAHA.122.062714.

Article  PubMed  Google Scholar 

Boden WE, O’Rourke RA, Teo KK, et al. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med 2007;356:1503‐16. https://doi.org/10.1056/NEJMoa070829.

Article  CAS  PubMed  Google Scholar 

Serruys PW, Morice MC, Kappetein AP, et al. Percutaneous coronary intervention versus coronary-artery bypass grafting for severe coronary artery disease. N Engl J Med 2009;360:961‐72. https://doi.org/10.1056/NEJMoa0804626.

Article  CAS  PubMed  Google Scholar 

Mohr FW, Morice MC, Kappetein AP, et al. Coronary artery bypass graft surgery versus percutaneous coronary intervention in patients with three-vessel disease and left main coronary disease: 5-year follow-up of the randomised, clinical SYNTAX trial. Lancet 2013;381:629‐38. https://doi.org/10.1016/S0140-6736(13)60141-5.

Article  PubMed  Google Scholar 

Thuijs DJFM, Kappetein AP, Serruys PW, et al. Percutaneous coronary intervention versus coronary artery bypass grafting in patients with three-vessel or left main coronary artery disease: 10-year follow-up of the multicentre randomised controlled SYNTAX trial. Lancet 2019;394:1325‐34. https://doi.org/10.1016/S0140-6736(19)31997-X.

Article  CAS  PubMed  Google Scholar 

Konigstein M, Redfors B, Zhang Z, et al. Utility of the ACC/AHA lesion classification to predict outcomes after contemporary des treatment: individual patient data pooled analysis from 7 randomized trials. J Am Heart Assoc 2022;11:e025275. https://doi.org/10.1161/JAHA.121.025275.

Article  PubMed  PubMed Central  Google Scholar 

De Bruyne B, Bartunek J, Sys SU, Heyndrickx GR. Relation between myocardial fractional flow reserve calculated from coronary pressure measurements and exercise-induced myocardial ischemia. Circulation 1995;92:39‐46. https://doi.org/10.1161/01.CIR.92.1.39.

Article  PubMed  Google Scholar 

Pijls NHJ, De Bruyne B, Peels K, et al. Measurement of fractional flow reserve to assess the functional severity of coronary-artery stenoses. N Engl J Med 1996;334:1703‐8. https://doi.org/10.1056/NEJM199606273342604.

Article  CAS  PubMed  Google Scholar 

Bech GJW, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve to determine the appropriateness of angioplasty in moderate coronary stenosis: A randomized trial. Circulation 2001;103:2928‐34. https://doi.org/10.1161/01.CIR.103.24.2928.

Article  CAS  PubMed  Google Scholar 

Tonino PAL, De Bruyne B, Pijls NHJ, et al. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med 2009;360:213‐24. https://doi.org/10.1056/NEJMoa0807611.

Article  CAS  PubMed  Google Scholar 

De Bruyne B, Pijls NHJ, Kalesan B, et al. Fractional flow reserve-guided PCI versus medical therapy in stable coronary disease. N Engl J Med 2012;367:991‐1001. https://doi.org/10.1056/NEJMoa1205361.

Article  CAS  PubMed  Google Scholar 

Götberg M, Christiansen EH, Gudmundsdottir IJ, et al. Instantaneous wave-free ratio versus fractional flow reserve to guide PCI. N Engl J Med 2017;376:1813‐23. https://doi.org/10.1056/NEJMoa1616540.

Article  PubMed  Google Scholar 

Altstidl JM, Gaede L, Troebs M, Marwan M, Achenbach S. Side effects and major adverse cardiac events caused by fractional flow reserve measurement: a systematic review and meta-analysis of 12,215 patients. Eur Heart J 2022;43:ehac544.2022. https://doi.org/10.1093/eurheartj/ehac544.2022.

Article  Google Scholar 

Fearon WF, Achenbach S, Engstrom T, et al. Accuracy of fractional flow reserve derived from coronary angiography. Circulation 2019;139:477‐84. https://doi.org/10.1161/CIRCULATIONAHA.118.037350.

Article  PubMed  Google Scholar 

Collet C, Onuma Y, Sonck J, et al. Diagnostic performance of angiography-derived fractional flow reserve: a systematic review and Bayesian meta-analysis. Eur Heart J 2018;39:3314‐21. https://doi.org/10.1093/eurheartj/ehy445.

Article  PubMed  Google Scholar 

Westra J, Andersen BK, Campo G, et al. Diagnostic performance of in-procedure angiography-derived quantitative flow reserve compared to pressure-derived fractional flow reserve: the FAVOR II Europe-Japan Study. J Am Heart Assoc 2018;7:e009603. https://doi.org/10.1161/JAHA.118.009603.

Article  PubMed  PubMed Central  Google Scholar 

Westra J, Tu S, Winther S, et al. Evaluation of coronary artery stenosis by quantitative flow ratio during invasive coronary angiography: the WIFI II Study (Wire-Free Functional Imaging II). Circ Cardiovasc Imaging 2018;11:e007107. https://doi.org/10.1161/CIRCIMAGING.117.007107.

Article  PubMed  PubMed Central  Google Scholar 

Pellicano M, Lavi I, De Bruyne B, et al. Validation study of image-based fractional flow reserve during coronary angiography. Circ Cardiovasc Interv 2017;10:e005259. https://doi.org/10.1161/CIRCINTERVENTIONS.116.005259.

Article  PubMed  Google Scholar 

Westra J, Rasmussen LD, Eftekhari A, et al. Coronary Artery Stenosis Evaluation by Angiography-Derived FFR. JACC Cardiovasc Imaging. Published online April 2023:S1936878X23001055. doi:https://doi.org/10.1016/j.jcmg.2023.02.008

Biscaglia S, Verardi FM, Tebaldi M, et al. QFR-based virtual PCI or conventional angiography to guide PCI. JACC Cardiovasc Interv 2023;16:783‐94. https://doi.org/10.1016/j.jcin.2022.10.054.

Article  PubMed  Google Scholar 

Xu B, Tu S, Song L, et al. Angiographic quantitative flow ratio-guided coronary intervention (FAVOR III China): a multicentre, randomised, sham-controlled trial. Lancet 2021;398:2149‐59. https://doi.org/10.1016/S0140-6736(21)02248-0.

Article  PubMed  Google Scholar 

Schindler TH, Fearon WF, Pelletier-Galarneau M, et al. Myocardial perfusion PET for the detection and reporting of coronary microvascular dysfunction. JACC Cardiovasc Imaging 2023;16:536‐48. https://doi.org/10.1016/j.jcmg.2022.12.015.

Article  PubMed  Google Scholar 

Ng MKC, Yeung AC, Fearon WF. Invasive assessment of the coronary microcirculation: Superior reproducibility and less hemodynamic dependence of index of microcirculatory resistance compared with coronary flow reserve. Circulation 2006;113:2054‐61. https://doi.org/10.1161/CIRCULATIONAHA.105.603522.

Article  PubMed  Google Scholar 

Chandrasekar B, Doucet S, Bilodeau L, et al. Complications of cardiac catheterization in the current era: a single-center experience. Catheter Cardiovasc Interv 2001;52:289‐95. https://doi.org/10.1002/ccd.1067.

Article  CAS  PubMed  Google Scholar 

West R, Ellis G, Brooks N. Complications of diagnostic cardiac catheterisation: results from a confidential inquiry into cardiac catheter complications. Heart 2006;92:810‐4. https://doi.org/10.1136/hrt.2005.073890.

Article  CAS  PubMed  Google Scholar 

Al-Hijji MA, Lennon RJ, Gulati R, et al. Safety and risk of major complications with diagnostic cardiac catheterization. Circ Cardiovasc Interv 2019;12:e007791. https://doi.org/10.1161/CIRCINTERVENTIONS.119.007791.

Article  PubMed  Google Scholar 

Mettler FA, Huda W, Yoshizumi TT, Mahesh M. Effective doses in radiology and diagnostic nuclear medicine: A catalog. Radiology 2008;248:254‐63. https://doi.org/10.1148/radiol.2481071451.

Article  PubMed  Google Scholar 

Fazel R, Krumholz HM, Wang Y, et al. Exposure to low-dose ionizing radiation from medical

留言 (0)

沒有登入
gif