Arctic Polar Vortex Dynamics According to the Delineation Method Using Geopotential

D. W. Waugh and W. J. Randel, “Climatology of Arctic and Antarctic polar vortices using elliptical diagnostics,” J. Atmos. Sci. 56 (11), 1594–1613 (1999).

Article  ADS  Google Scholar 

D. W. Waugh, A. H. Sobel, and L. M. Polvani, “What is the polar vortex and how does it influence weather?,” Bull. Amer. Meteor. Soc. 98 (1), 37–44 (2017).

Article  ADS  Google Scholar 

X. Zhang and J. M. Forbes, “Lunar tide in the thermosphere and weakening of the northern polar vortex,” Geophys. Rev. Lett. 41 (23), 8201–8207 (2014).

Article  ADS  Google Scholar 

V. Matthias, A. Dornbrack, and G. Stober, “The extraordinarily strong and cold polar vortex in the early northern winter 2015/2016,” Geophys. Rev. Lett. 43 (23), 12 287–12 294 (2016).

Article  Google Scholar 

H. Akiyoshi, L. B. Zhou, Y. Yamashita, K. Sakamoto, M. Yoshiki, T. Nagashima, M. Takahashi, J. Kurokawa, M. Takigawa, and T. Imamura, “A CCM simulation of the breakup of the Antarctic polar vortex in the years 1980–2004 under the CCMVal scenarios,” J. Geophys. Res. 114 (3), D03103 (2009).

Article  ADS  Google Scholar 

V. V. Zuev and E. Savelieva, “The cause of the spring strengthening of the Antarctic polar vortex,” Dynam. Atmos. Oceans 87, 101097 (2019).

Article  Google Scholar 

H. Hersbach, B. Bell, P. Berrisford, S. Hirahara, A. Horanyi, J. Munoz-Sabater, J. Nicolas, C. Peubey, R. Radu, D. Schepers, A. Simmons, C. Soci, S. Abdalla, X. Abellan, G. Balsamo, P. Bechtold, G. Biavati, J. Bidlot, M. Bonavita, G. de Chiara, P. Dahlgren, D. Dee, M. Diamantakis, R. Dragani, J. Flemming, R. Forbes, M. Fuentes, A. Geer, L. Haimberger, S. Healy, R. J. Hogan, E. Holm, M. Janiskova, S. Keeley, P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay, I. Rozum, F. Vamborg, S. Villaume, and J.‑N. Thepaut, “The ERA5 global reanalysis,” Q. J. Roy. Meteor. Soc. 146 (729), 1–51 (2020).

Article  Google Scholar 

V. V. Zuev, E. S. Savelieva, and A. V. Pavlinsky, “Analysis of the Arctic polar vortex dynamics during the sudden stratospheric warming in January 2009,” Problemy Arktiki Antarktiki 67 (2), 134–146 (2021).

Article  Google Scholar 

V. V. Zuev and E. Savelieva, “Antarctic polar vortex dynamics during spring 2002,” J. Earth Syst. Sci. 131 (2), 119 (2022).

Article  ADS  Google Scholar 

V. V. Zuev and E. Savelieva, “Antarctic polar vortex dynamics depending on wind speed along the vortex edge,” Pure Appl. Geophys. 179 (6-7), 2609–2616 (2022).

Article  ADS  Google Scholar 

R. Gelaro, W. McCarty, M. J. Suarez, R. Todling, A. Molod, L. Takacs, C. A. Randles, A. Darmenov, M. G. Bosilovich, R. Reichle, K. Wargan, L. Coy, R. Cullather, C. Draper, S. Akella, V. Buchard, A. Conaty, A. M. Silva, W. Gu, G.-K. Kim, R. Koster, R. Lucchesi, D. Merkova, J. E. Nielsen, G. Partyka, S. Pawson, W. Putman, M. Rienecker, S. D. Schubert, M. Sienkiewicz, and B. Zhao, “The modern-era retrospective analysis for research and applications, Version 2 (MERRA-2),” J. Clim. 30 (14), 5419–5454 (2017).

Article  ADS  Google Scholar 

P. A. Newman, J. F. Gleason, R. D. McPeters, and R. S. Stolarski, “Anomalously low ozone over the Arctic,” Geophys. Rev. Lett. 24 (22), 2689–2692 (1997).

Article  ADS  Google Scholar 

J. Kuttippurath, S. Godin-Beekmann, F. Lefevre, G. Nikulin, M. L. Santee, and L. Froidevaux, “Record-breaking ozone loss in the Arctic winter 2010/2011: Comparison with 1996/1997,” Atmos. Chem. Phys. 12 (15), 7073–7085 (2012).

Article  ADS  Google Scholar 

G. L. Manney, M. L. Santee, M. Rex, N. J. Livesey, M. C. Pitts, P. Veefkind, E. R. Nash, I. Wohltmann, R. Lehmann, L. Froidevaux, L. R. Poole, M. R. Schoeberl, D. P. Haffner, J. Davies, V. Dorokhov, H. Gernandt, B. Johnson, R. Kivi, E. Kyro, N. Larsen, P. F. Levelt, A. Makshtas, C. T. McElroy, H. Nakajima, M. C. Parrondo, D. W. Tarasick, P. Gathen, K. A. Walker, and N. S. Zinoviev, “Unprecedented Arctic ozone loss in 2011,” Nature 478 (7370), 469–475 (2011).

Article  ADS  Google Scholar 

J. Rao and C. I. Garfinkel, “The strong stratospheric polar vortex in March 2020 in sub-seasonal to seasonal models: Implications for empirical prediction of the low Arctic total ozone extreme,” Geophys. Rev. Lett. 126 (9) (2021).

留言 (0)

沒有登入
gif