Sounding of Kelvin–Helmholtz Waves by a Turbulent Lidar: I–BSE-4 Lidar

E. E. Gossard and W. H. Hooke, Waves in the Atmosphere (Elsevier, New York, 1975).

Google Scholar 

N. P. Shakina, Hydrodynamic Instability in the Atmosphere (Gidrometeoizdat, Leningrad, 1990) [in Russian].

Google Scholar 

C. J. Nappo, An Introduction to Atmospheric Gravity Waves (Academic Press, 2002).

Google Scholar 

G. S. Poulos, W. Blumen, D. C. Fritts, J. K. Lundquist, J. Sun, S. P. Burns, C. Nappo, R. Banta, R. Newsom, J. Cuxart, E. Terradellas, B. Balsley, and M. Jensen, “CASES-99: A comprehensive investigation of the stable nocturnal boundary layer,” Bull. Am. Meteorol. Soc. 83, 555–581 (2002).

Article  ADS  Google Scholar 

W. E. Eichinger, D. I. Cooper, P. R. Forman, J. Griegos, M. A. Osborn, D. Richter, L. L. Tellier, and R. Thornton, “The development of a scanning Raman water vapor lidar for boundary layer and tropospheric observations,” J. Atmos. Ocean. Technol. 11 (2), 1753–1766 (1999).

Article  Google Scholar 

R. K. Newsom and R. M. Banta, “Shear instability gravity waves in the stable nocturnal boundary layer as observed by Doppler lidar during CASES-99,” J. Atmos. Sci. 60, 16–33 (2003).

Article  ADS  Google Scholar 

V. S. Lyulyukin, M. A. Kallistratova, R. D. Kouznetsov, D. D. Kuznetsov, I. P. Chunchuzov, and G. Y. Chirokova, “Internal gravity-shear waves in the atmospheric boundary layer from acoustic remote sensing data,” Izv., Atmos. Ocean. Phys. 51 (2), 193–202 (2015).

Article  Google Scholar 

M. A. Kallistratova, V. S. Lyulyukin, R. D. Kuznetsov, I. V. Petenko, D. V. Zaitseva, and D. D. Kuznetsov, “Sodar studies of Kelvin–Helmholtz waves in low-level jet streams,” in Dynamics of Wave and Exchange Processes in the Atmosphere (GEOS, Moscow, 2017), pp. 212–259 [in Russian].

Google Scholar 

A. G. Vinogradov, A. S. Gurvich, S. S. Kashkarov, Yu. A. Kravtsov, and V. I. Tatarskii, RF Certificate for Discovery No. 359, Byull. Izobret., No. 21 (1989).

A. G. Vinogradov, Yu. A. Kravtsov, and V. I. Tatarskii, “Amplification effect of backscattering by bodies placed in a medium with random inhomogeneities,” Izv. Vysch. Ucheb. Zaved. Radiofiz. 16 (7), 1064–1070 (1973).

Google Scholar 

Yu. A. Kravtsov and A. I. Saichev, “Effects of double passage of waves in randomly inhomogeneous media,” Sov. Phys. Usp. 25 (3), 494–508 (1982). https://doi.org/10.1070/PU1982v025n07ABEH004571

Article  ADS  Google Scholar 

A. S. Gurvich, “Lidar sounding of turbulence based on the backscatter enhancement effect,” Izv., Atmos. Ocean. Phys. 48 (6), 585–594 (2012).

Article  Google Scholar 

I. A. Razenkov, “Engineering and technical solutions when designing a turbulent lidar,” Atmos. Ocean. Opt. 35 (S1), 148–S158 (2022).

Article  Google Scholar 

I. A. Razenkov, “Capabilities of a turbulent BSE-lidar for the study of the atmospheric boundary layer,” Atmos. Ocean. Opt. 34 (3), 229–238 (2021).

Article  Google Scholar 

V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: I—Equations," Atmos. Ocean. Opt. 30 (2), 156–161 (2017).

Article  Google Scholar 

V. V. Vorob’ev, “On the applicability of asymptotic formulas of retrieving "optical” turbulence parameters from pulse lidar sounding data: II—Results of numerical simulation," Atmos. Oceanю Opt. 30 (2), 162–168 (2017).

Article  Google Scholar 

I. A. Razenkov, “A heuristic approach to defining the structure parameter of the refractive index of the atmosphere from turbulent lidar data,” Atmos. Oceanю Opt. 35 (4), 345–354 (2022).

Article  Google Scholar 

J. W. Miles, “On the stability of heterogeneous shear flow,” J. Fluid Mech. 10 (4), 496–509 (1961).

Article  ADS  MathSciNet  Google Scholar 

L. N. Howard, “Note on a paper of John W. Miles,” J. Fluid Mech. 10 (4), 509–512 (1961).

Article  ADS  MathSciNet  Google Scholar 

I. A. Razenkov, “Specifics of sounding the atmospheric boundary layer with a turbulent lidar,” Atmos. Ocean. Opt. 33 (6), 610–615 (2020).

Article  Google Scholar 

H. B. Squire, “On the stability for three-dimensional disturbances of viscous fluid flow between parallel walls.” Proc. Roy. Soc. London. Series A 142 (847), 621–628 (1933).

www.ventusky.com. Cited March 13, 2023.

留言 (0)

沒有登入
gif