Brain-guided manifold transferring to improve the performance of spiking neural networks in image classification

Bellec, G., Salaj, D., Subramoney, A., Legenstein, R., & Maass, W. (2018). Long short-term memory and learning-to-learn in networks of spiking neurons. Advances in neural Information Processing Systems, 31.

Cudlenco, N., Popescu, N., & Leordeanu, M. (2020). Reading into the mind’s eye: Boosting automatic visual recognition with EEG signals. Neurocomputing, 386, 281–292.

Article  Google Scholar 

Deng, L., et al. (2020). Rethinking the performance comparison between SNNs and ANNs. Neural Networks, 121, 294–307.

Article  PubMed  Google Scholar 

Fang, W., Yu, Z., Chen, Y., Huang, T., Masquelier, T., & Tian, Y. (2021). Deep Residual Learning in Spiking Neural Networks. Advances in Neural Information Processing Systems, 34, 21056–21069.

Google Scholar 

Fares, A., Zhong, S., & Jiang, J. (2019). EEG-based image classification via a region-level stacked bi-directional deep learning framework. BMC Medical Informatics and Decision Making, 19(6), 268.

Article  PubMed  PubMed Central  Google Scholar 

Fu, Q., & Dong, H. (2021). An ensemble unsupervised spiking neural network for objective recognition. Neurocomputing, 419, 47–58.

Article  Google Scholar 

Garg, I., Chowdhury,  S. S., & Roy, K. (2021). DCT-SNN: Using DCT To Distribute Spatial Information Over Time for Low-Latency Spiking Neural Networks. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 4671–4680.

Ghojogh, B., Karray, F., & Crowley, M. (2019). Fisher and kernel Fisher discriminant analysis: Tutorial. arXiv Prepr. arXiv1906.09436

Hajizadeh, R., Aghagolzadeh, A., & Ezoji, M. (2022). Mutual neighborhood and modified majority voting based KNN classifier for multi-categories classification. Pattern Analysis and Applications, 25(4), 773–793.

Article  Google Scholar 

Hojjaty Saeedy, R. (2021). Biologically Inspired Computer Vision/ Applications of Computational Models of Primate Visual Systems in Computer Vision and Image Processing. University of New Hampshire.

Jebelli, H., Khalili, M. M., & Lee, S. (2019). Mobile EEG-based workers’ stress recognition by applying deep neural network. In Advances in Informatics and Computing in Civil and Construction Engineering, Springer, 173–180.

Jiang, J., Fares, A., & Zhong, S.-H. (2019). A Context-Supported Deep Learning Framework for Multimodal Brain Imaging Classification. IEEE Transactions on Human-Machine Systems, 49(6), 611–622.

Article  Google Scholar 

Jiang, Y., Krishnan, D., Mobahi, H., & Bengio, S. (2018). Predicting the generalization gap in deep networks with margin distributions. arXiv paper. arXiv:1810.00113

Ju, R., Hu, C., & Li, Q. (2017). Early diagnosis of Alzheimer’s disease based on resting-state brain networks and deep learning. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 16(1), 244–257.

Article  PubMed  Google Scholar 

Kaneshiro, B., Guimaraes, M. P., Kim, H.-S., Norcia, A. M., & Suppes, P. (2015). A representational similarity analysis of the dynamics of object processing using single-trial EEG classification. PLoS ONE, 10(8), e0135697.

Article  PubMed  PubMed Central  Google Scholar 

Kavasidis, I., Palazzo, S., Spampinato, C., Giordano, D., & Shah, M. (2017). Brain2image: Converting brain signals into images. In Proceedings of the 25th ACM international conference on Multimedia, 1809–1817.

Kundu, S., Pedram, M., & Beerel, P. A. (2021). Hire-snn: Harnessing the inherent robustness of energy-efficient deep spiking neural networks by training with crafted input noise. In Proceedings of the IEEE/CVF International Conference on Computer Vision, 5209–5218.

Lee, C., Panda, P., Srinivasan, G., & Roy, K. (2018). Training deep spiking convolutional neural networks with stdp-based unsupervised pre-training followed by supervised fine-tuning. Frontiers in Neuroscience, 12, 435.

Article  PubMed  PubMed Central  Google Scholar 

Lee, E., Choi, J.-S., Kim, M., Suk, H.-I., & Initiative, A. D. N. (2019). Toward an interpretable Alzheimer’s disease diagnostic model with regional abnormality representation via deep learning. NeuroImage, 202, 116113.

Article  PubMed  Google Scholar 

Lotfi Rezaabad, A., & Vishwanath, S. (2020). Long short-term memory spiking networks and their applications. In International Conference on Neuromorphic Systems, 1–9.

Masquelier, T. (2017). Spike-based computing and learning in brains, machines, and visual systems in particular (HDR Report). Ph. D. Dissertation. https://doi.org/10.13140/RG.2.2.30232.49922

Neftci, E. O., Mostafa, H., & Zenke, F. (2019a). Surrogate gradient learning in spiking neural networks. IEEE Signal Processing Magazine, 36, 61–63.

Article  Google Scholar 

Neftci, E. O., Mostafa, H., & Zenke, F. (2019b). Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based optimization to spiking neural networks. IEEE Signal Processing Magazine, 36(6), 51–63.

Article  Google Scholar 

Oh, S. L., et al., (2018). A deep learning approach for Parkinson’s disease diagnosis from EEG signals. Neural Computing and Applications, 1–7.

Palazzo, S., Spampinato, C., Kavasidis, I., Giordano, D., Schmidt, J., & Shah, M. (2020). Decoding brain representations by multimodal learning of neural activity and visual features. IEEE Transactions on Pattern Analysis and Machine Intelligence, 43(11), 3833–3849.

Article  Google Scholar 

Panda, P., Aketi, S. A., & Roy, K. (2020). Toward scalable, efficient, and accurate deep spiking neural networks with backward residual connections, stochastic softmax, and hybridization. Frontiers in Neuroscience, 14.

Rathi, N., Srinivasan, G., Panda, P., & Roy, K. (2020). Enabling deep spiking neural networks with hybrid conversion and spike timing dependent backpropagation. arXiv Prepr. arXiv2005.01807

Rueckauer, B., Lungu, I.-A., Hu, Y., Pfeiffer, M., & Liu, S.-C. (2017). Conversion of continuous-valued deep networks to efficient event-driven networks for image classification. Frontiers in Neuroscience, 11, 682.

Article  PubMed  PubMed Central  Google Scholar 

Russakovsky, O., et al. (2015). Imagenet large scale visual recognition challenge. International Journal of Computer Vision, 115(3), 211–252.

Article  Google Scholar 

Sengupta, A., Ye, Y., Wang, R., Liu, C., & Roy, K. (2019). Going deeper in spiking neural networks: VGG and residual architectures. Frontiers in Neuroscience, 13.

Shrestha, S. B., & Orchard, G. (2018). Slayer: Spike layer error reassignment in time. Advances in Neural Information Processing Systems, 31, 1412–1421.

Google Scholar 

Song, T., Zheng, W., Song, P., & Cui, Z. (2018). EEG emotion recognition using dynamical graph convolutional neural networks. IEEE Transactions on Affective Computing, 11(3), 532–541.

Article  Google Scholar 

Spampinato, C., Palazzo, S., Kavasidis, I., Giordano, D., Souly, N., & Shah, M. (2017). Deep learning human mind for automated visual classification. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 6809–6817.

Srinivasan, G., Lee, C., Sengupta, A., Panda, P., Sarwar, S. S., & Roy, K. (2020). Training Deep Spiking Neural Networks for Energy-Efficient Neuromorphic Computing. In ICASSP 2020–2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), 8549–8553.

Taheri, S., Ezoji, M., & Sakhaei, S. M. (2020). Convolutional neural network based features for motor imagery EEG signals classification in brain–computer interface system. SN Applied Science, 2(4), 1–12.

Article  Google Scholar 

Taherkhani, A., Belatreche, A., Li, Y., Cosma, G., Maguire, L. P., & McGinnity, T. M. (2020). A review of learning in biologically plausible spiking neural networks. Neural Networks, 122, 253–272.

Article  PubMed  Google Scholar 

Wu, J., et al. (2021). Progressive tandem learning for pattern recognition with deep spiking neural networks. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(11), 7824–7840.

Article  Google Scholar 

Wu, Y., Deng, L., Li, G., Zhu, J., & Shi, L. (2018). Spatio-temporal backpropagation for training high-performance spiking neural networks. Frontiers in Neuroscience, 12, 331.

Article  PubMed  PubMed Central  Google Scholar 

Yoo, Y., et al. (2018). Deep learning of joint myelin and T1w MRI features in normal-appearing brain tissue to distinguish between multiple sclerosis patients and healthy controls. NeuroImage Clinical, 17, 169–178.

Article  PubMed  Google Scholar 

Zhang, M., et al. (2021). Rectified linear postsynaptic potential function for backpropagation in deep spiking neural networks. IEEE Transactions on Neural Networks Learning Systems, 33(5), 1947–1958.

Article  Google Scholar 

Zheng, X., Chen, W., You, Y., Jiang, Y., Li, M., & Zhang, T. (2020). Ensemble deep learning for automated visual classification using EEG signals. Pattern Recognition, 102, 107147.

Article  Google Scholar 

Zhong, S., Fares, A., & Jiang, J. (2019). An Attentional-LSTM for Improved Classification of Brain Activities Evoked by Images. In Proceedings of the 27th ACM International Conference on Multimedia, 1295–1303.

留言 (0)

沒有登入
gif