Emerging Biomarkers of Acute Myocardial Infarction, An Overview of the Newest MicroRNAs

Vatani KK, Raberi VS, Khalili N, Ajdari S. The Association Between the Serum Level of 25-Hydroxy Vitamin D and the Echocardiographic Indices of Left Ventricular Function in Patients With no Significant Coronary Artery Disease. CJMB. 2020;7(2):220-4.

Tabrizi MT, Khezerlu N, Rabori VS, Sarvestani AH. The assessment of functional indices of left ventricular wall layers in cases with normal and high blood pressure by layer-specific strain methods. J Res Clin Med. 2022;10(7):1.

https://doi.org/10.34172/jrcm.2022.007

Tabrizi MT, Khezerlouy-Aghdam N, Raberi VS, Khosroshahi AJ. Aortic shelf as a normal variant diagnosed primarily as the aortic dissection: A case report. J Cardiovasc Thorac Res. 2020;12(3):234.

https://doi.org/10.34172/jcvtr.2020.41

PMid:33123332 PMCid:PMC7581841

Raberi VS, Ezati E, Zadeh RF. The relationship between the hematologic indices (PDW, WBC count, MPV) at the admission time and descending ST segment after thrombolysis in patients with myocardial infarction. Amazonia Investiga. 2019;8(18):139-49.

Chaulin AM, Duplyakov DV. Biomarkers of acute myocardial infarction: diagnostic and prognostic value. Part 1 J Clin Pract. 2020;11(3):75-84.

https://doi.org/10.17816/clinpract34284

Wang XY, Zhang F, Zhang C, Zheng LR, Yang J. The biomarkers for acute myocardial infarction and heart failure. Biomed Res Int. 2020;2020:1.

https://doi.org/10.1155/2020/8827962

https://doi.org/10.1155/2020/6653819

https://doi.org/10.1155/2020/7197054

https://doi.org/10.1155/2020/5717498

https://doi.org/10.1155/2020/6639341

https://doi.org/10.1155/2020/6081768

https://doi.org/10.1155/2020/8894180

https://doi.org/10.1155/2020/7451576

https://doi.org/10.1155/2020/8894331

https://doi.org/10.1155/2020/4854390

https://doi.org/10.1155/2020/8216541

https://doi.org/10.1155/2020/8829346

https://doi.org/10.1155/2020/8887982

https://doi.org/10.1155/2020/6665974

https://doi.org/10.1155/2020/8723869

PMid:33532487 PMCid:PMC7836023

Long B, Long DA, Tannenbaum L, Koyfman A. An emergency medicine approach to troponin elevation due to causes other than occlusion myocardial infarction. AJEM. 2020;38(5):998-1006.

https://doi.org/10.1016/j.ajem.2019.12.007

PMid:31864875

Rashid S, Malik A, Khurshid R, Faryal U, Qazi S. The diagnostic value of biochemical cardiac markers in acute myocardial infarction. Myocardial Infarction. 2019;23:.

https://doi.org/10.5772/intechopen.76150

Zhang P, Wu W, Chen Q, Chen M. Non-coding RNAs and their integrated networks. J Integr Bioinform. 2019;16(3):1.

https://doi.org/10.1515/jib-2019-0027

PMid:31301674 PMCid:PMC6798851

Wang C, Jing Q. Non-coding RNAs as biomarkers for acute myocardial infarction. Acta Pharmacol Sin. 2018;39(7):1110-9.

https://doi.org/10.1038/aps.2017.205

PMid:29698386 PMCid:PMC6289336

Lu TX, Rothenberg ME. MicroRNA. Journal of allergy and clinical immunology. 2018;141(4):1202-7.

https://doi.org/10.1016/j.jaci.2017.08.034

PMid:29074454 PMCid:PMC5889965

Mathieu E-L, Belhocine M, Dao L, Puthier D, Spicuglia S. Functions of lncRNA in development and diseases. Med Sci: M/S. 2014;30(8-9):790-6.

https://doi.org/10.1051/medsci/20143008018

PMid:25174757

Saw PE, Song E-W. siRNA therapeutics: a clinical reality. Sci China Life Sci. 2020;63(4):485-500.

https://doi.org/10.1007/s11427-018-9438-y

PMid:31054052

Cai Y, Lei X, Chen Z, Mo Z. The roles of cirRNA in the development of germ cells. Acta Histochem. 2020;122(3):151506.

https://doi.org/10.1016/j.acthis.2020.151506

PMid:32008790

Wang X-M, Li X-M, Song N, Zhai H, Gao X-M, Yang Y-N. Long non-coding RNAs H19, MALAT1 and MIAT as potential novel biomarkers for diagnosis of acute myocardial infarction. Biomed Pharmacother. 2019;118:109208.

https://doi.org/10.1016/j.biopha.2019.109208

PMid:31302423

Poller W, Dimmeler S, Heymans S, Zeller T, Haas J, Karakas M et al. Non-coding RNAs in cardiovascular diseases: diagnostic and therapeutic perspectives. Eur Heart J. 2018;39(29):2704-16.

https://doi.org/10.1093/eurheartj/ehx165

PMid:28430919 PMCid:PMC6454570

Zhang L, Ding H, Zhang Y, Wang Y, Zhu W, Li P. Circulating MicroRNAs: biogenesis and clinical significance in acute myocardial infarction. Front Physiol. 2020;11:1088.

https://doi.org/10.3389/fphys.2020.01088

PMid:33013463 PMCid:PMC7494963

Zhang L, Chen X, Su T, Li H, Huang Q, Wu D et al. Circulating miR-499 are novel and sensitive biomarker of acute myocardial infarction. J Thorac Dis. 2015;7(3):303.

https://doi.org/10.1016/j.jacc.2015.06.318

PMid:25922707 PMCid:PMC4387434

Chen X, Liang H, Zhang J, Zen K, Zhang C-Y. Horizontal transfer of microRNAs: molecular mechanisms and clinical applications. Protein & cell. 2012;3(1):28-37.

https://doi.org/10.1007/s13238-012-2003-z

PMid:22314808 PMCid:PMC4875218

Olivieri F, Antonicelli R, Lorenzi M, D'Alessandra Y, Lazzarini R, Santini G et al. Diagnostic potential of circulating miR-499-5p in elderly patients with acute non ST-elevation myocardial infarction. Int J Cardiol. 2013;167(2):531-6.

https://doi.org/10.1016/j.ijcard.2012.01.075

PMid:22330002

Safa A, Bahroudi Z, Shoorei H, Majidpoor J, Abak A, Taheri M et al. miR-1: A comprehensive review of its role in normal development and diverse disorders. Biomed Pharmacother. 2020;132:110903.

https://doi.org/10.1016/j.biopha.2020.110903

PMid:33096351

de Gonzalo-Calvo D, Van Der Meer R, Rijzewijk L, Smit J, Revuelta-López E, Nasarre L et al. Serum microRNA-1 and microRNA-133a levels reflect myocardial steatosis in uncomplicated type 2 diabetes. Sci Rep. 2017;7(1):1-14.

https://doi.org/10.1038/s41598-017-00070-6

PMid:28246388 PMCid:PMC5428350

Pinchi E, Frati P, Aromatario M, Cipolloni L, Fabbri M, La Russa R et al. miR-1, miR-499 and miR-208 are sensitive markers to diagnose sudden death due to early acute myocardial infarction. J Cell Mol Med. 2019;23(9):6005-16.

https://doi.org/10.1111/jcmm.14463

PMid:31240830 PMCid:PMC6714215

Wang F, Li X, Xie X, Zhao L, Chen W. UCA1, a non-protein-coding RNA up-regulated in bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett. 2008;582(13):1919-27.

https://doi.org/10.1016/j.febslet.2008.05.012

PMid:18501714

Yan Y, Zhang B, Liu N, Qi C, Xiao Y, Tian X et al. Circulating long noncoding RNA UCA1 as a novel biomarker of acute myocardial infarction. Biomed Res Int. 2016;2016:1.

https://doi.org/10.1155/2016/9471478

https://doi.org/10.1155/2016/8079372

https://doi.org/10.1155/2016/8367063

PMid:27069927 PMCid:PMC4812220

Liu Y, Mao S, Luo X, Wang Y. Circulating miR-1/UCA1 is a novel biomarker for the diagnosis and prognosis of acute myocardial infarction. Int J Cardiol. 2020;310:137.

https://doi.org/10.1016/j.ijcard.2020.01.005

PMid:32389284

Yang J, Qi M, Fei X, Wang X, Wang K. LncRNA H19: A novel oncogene in multiple cancers. Int J Biol Sci. 2021;17(12):3188.

https://doi.org/10.7150/ijbs.62573

PMid:34421359 PMCid:PMC8375239

Zhang Z, Gao W, Long Q-Q, Zhang J, Li Y-F, Yan J-J et al. Increased plasma levels of lncRNA H19 and LIPCAR are associated with increased risk of coronary artery disease in a Chinese population. Sci Rep. 2017;7(1):1-9.

https://doi.org/10.1038/s41598-017-07611-z

PMid:28790415 PMCid:PMC5548926

Gao W, Zhu M, Wang H, Zhao S, Zhao D, Yang Y et al. Association of polymorphisms in long noncoding RNA H19 with coronary artery disease risk in a Chinese population. mutat resfund mol m. 2015;772:15-22.

https://doi.org/10.1016/j.mrfmmm.2014.12.009

PMid:25772106

Baird MF, Graham SM, Baker JS, Bickerstaff GF. Creatine-kinase-and exercise-related muscle damage implications for muscle performance and recovery. J Nutr Metab. 2012;2012:1.

https://doi.org/10.1155/2012/960363

PMid:22288008 PMCid:PMC3263635

Safaei S, Tahmasebi-Birgani M, Bijanzadeh M, Seyedian SM. Increased expression level of long noncoding RNA H19 in plasma of patients with myocardial infarction. Int J Mol Cell Med. 2020;9(2):122.

Chistiakov DA, Orekhov AN, Bobryshev YV. Cardiac-specific miRNA in cardiogenesis, heart function, and cardiac pathology (with focus on myocardial infarction). J Mol Cell Cardiol. 2016;94:107-21.

https://doi.org/10.1016/j.yjmcc.2016.03.015

PMid:27056419

Ji Y, Han Z, Shao L, Zhao Y. Evaluation of in vivo antitumor effects of low-frequency ultrasound-mediated miRNA-133a microbubble delivery in breast cancer. Cancer med. 2016;5(9):2534-43.

https://doi.org/10.1002/cam4.840

PMid:27465833 PMCid:PMC5055178

Chen Y, Zhao Y, Chen W, Xie L, Zhao Z-A, Yang J et al. MicroRNA-133 overexpression promotes the therapeutic efficacy of mesenchymal stem cells on acute myocardial infarction. Stem Cell Res Ther. 2017;8(1):1-11.

https://doi.org/10.1186/s13287-017-0722-z

https://doi.org/10.1186/s13287-018-1105-9

PMid:30606242 PMCid:PMC6318883

Peng L, Chun-guang Q, Bei-fang L, Xue-zhi D, Zi-hao W, Yun-fu L et al. Clinical impact of circulating miR-133, miR-1291 and miR-663b in plasma of patients with acute myocardial infarction. Diagn Pathol. 2014;9(1):1-7.

https://doi.org/10.1186/1746-1596-9-89

PMid:24885383 PMCid:PMC4082297

Kuwabara Y, Ono K, Horie T, Nishi H, Nagao K, Kinoshita M et al. Increased microRNA-1 and microRNA-133a levels in serum of patients with cardiovascular disease indicate myocardial damage. Circ Cardiovasc Genet. 2011;4(4):446-54.

https://doi.org/10.1161/CIRCGENETICS.110.958975

PMid:21642241

Widera C, Gupta SK, Lorenzen JM, Bang C, Bauersachs J, Bethmann K et al. Diagnostic and prognostic impact of six circulating microRNAs in acute coronary syndrome. J Mol Cell Cardiol. 2011;51(5):872-5.

https://doi.org/10.1016/j.yjmcc.2011.07.011

PMid:21806992

Yuan L, Liu X, Chen F, Zhang L, Chen X, Huang Q et al. Diagnostic and Prognostic Value of Circulating MicroRNA-133a in Patients with Acute Myocardial Infarction. Clin Lab. 2016;62(7):1233-41.

https://doi.org/10.7754/Clin.Lab.2015.151023

PMid:28164636

Ai J, Zhang R, Li Y, Pu J, Lu Y, Jiao J et al. Circulating microRNA-1 as a potential novel biomarker for acute myocardial infarction. Biochem Biophys Res Commun. 2010;391(1):73-7.

https://doi.org/10.1016/j.bbrc.2009.11.005

PMid:19896465

Vausort M, Wagner DR, Devaux Y. Long noncoding RNAs in patients with acute myocardial infarction. Circ Res. 2014;115(7):668-77.

https://doi.org/10.1161/CIRCRESAHA.115.303836

PMid:25035150

Pourrajab F, Velashani FT, Khanaghaei M, Hekmatimoghaddam S, Rahaie M, Zare-Khormizi MR. Comparison of miRNA signature versus conventional biomarkers before and after off-pump coronary artery bypass graft. J Pharm Biomed Anal. 2017;134:11-7.

https://doi.org/10.1016/j.jpba.2016.11.014

PMid:27866054

Long G, Wang F, Duan Q, Chen F, Yang S, Gong W et al. Human circulating microRNA-1 and microRNA-126 as potential novel indicators for acute myocardial infarction. Int J Biol Sci. 2012;8(6):811-8.

https://doi.org/10.7150/ijbs.4439

PMid:22719221 PMCid:PMC3372885

Li C, Chen X, Huang J, Sun Q, Wang L. Clinical impact of circulating miR-26a, miR-191, and miR-208b in plasma of patients with acute myocardial infarction. Eur J Med Res. 2015;20(1):1-8.

https://doi.org/10.1016/j.ejmech.2015.03.026

https://doi.org/10.1186/s40001-015-0148-y

PMid:26044724 PMCid:PMC4459687

Huang S, Chen M, Li L, He Ma, Hu D, Zhang X et al. Circulating MicroRNAs and the occurrence of acute myocardial infarction in Chinese populations. Circ Cardiovasc Genet. 2014;7(2):189-98.

https://doi.org/10.1161/CIRCGENETICS.113.000294

PMid:24627568

Zhang M, Cheng Y-J, Sara JD, Liu L-J, Liu L-P, Zhao X et al. Circulating microRNA-145 is associated with acute myocardial infarction and heart failure. Chin Med J. 2017;130(01):51-6.

https://doi.org/10.4103/0366-6999.196573

PMid:28051023 PMCid:PMC5221112

Chen Y, Tao Y, Zhang L, Xu W, Zhou X. Diagnostic and prognostic value of biomarkers in acute myocardial infarction. Postgrad Med J. 2019;95(1122):210-6.

https://doi.org/10.1136/postgradmedj-2019-136409

PMid:30948439

Chen Z, Li C, Lin K, Zhang Q, Chen Y, Rao L. MicroRNAs in acute myocardial infarction: Evident value as novel biomarkers? Anatol J Cardiol. 2018;19(2):140.

https://doi.org/10.14744/AnatolJCardiol.2017.8124

PMid:29424735 PMCid:PMC5864810

留言 (0)

沒有登入
gif