Investigation of Kelussia odoratissima and Angelica sinensis similarities in zebrafish-based in-vivo bioactivity assays and their chemical composition

León A, Del-Ángel M, Ávila JL, Delgado G. Phthalides: distribution in nature, chemical reactivity, synthesis, and biological activity. Progress in the chemistry of organic natural products. 2017:127-246.

https://doi.org/10.1007/978-3-319-45618-8_2

PMid:28160212

Ahmadipour B, Hassanpour H, Asadi E, Khajali F, Rafiei F, Khajali F. Kelussia odoratissima Mozzaf - A promising medicinal herb to prevent pulmonary hypertension in broiler chickens reared at high altitude. J Ethnopharmacol. 2015;159:49-54.

https://doi.org/10.1016/j.jep.2014.10.043

PMid:25446599

Omidbaigi R, Sefidkon F, Saeedi K. Essential Oil Content and Composition of Kelussia odoratissima Mozaff as an Iranian Endemic Plant. J Essent Oil-Bear Plants. 2008;11(6):594-7.

https://doi.org/10.1080/0972060X.2008.10643672

Wei W-L, Zeng R, Gu C-M, Qu Y, Huang L-F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116-41.

https://doi.org/10.1016/j.jep.2016.05.023

PMid:27211015

Gao Q, Li J, Cheung JKH, Duan J, Ding A, Cheung AWH et al. Verification of the formulation and efficacy of Danggui Buxue Tang (a decoction of Radix Astragali and Radix Angelicae Sinensis): an exemplifying systematic approach to revealing the complexity of Chinese herbal medicine formulae. Chin Med. 2007;2(1):12.

https://doi.org/10.1186/1749-8546-2-12

PMid:18045504 PMCid:PMC2140262

Su S, Cui W, Zhou W, Duan J-a, Shang E, Tang Y. Chemical fingerprinting and quantitative constituent analysis of Siwu decoction categorized formulae by UPLC-QTOF/MS/MS and HPLC-DAD. Chin Med. 2013;8(1):5.

https://doi.org/10.1186/1749-8546-8-5

PMid:23453004 PMCid:PMC3602048

Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353.

https://doi.org/10.1038/nrg2091

PMid:17440532

Seto S-W, Kiat H, Lee SM, Bensoussan A, Sun Y-T, Hoi MP et al. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. Eur J Pharmacol. 2015;768:77-86.

https://doi.org/10.1016/j.ejphar.2015.10.031

PMid:26494630

Salmi TM, Tan VW, Cox AG. Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans. 2019;47(1):305-15.

https://doi.org/10.1042/BST20180335

PMid:30700500

Noorimotlagh Z, Babaie M, Safdarian M, Ghadiri T, Rahimi-Movaghar V. Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review. Iran J Basic Med Sci. 2017;20(12):1287-96.

Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q et al. The use of zebrafish (Danio rerio) as biomedical models. Anim Front. 2019;9(3):68-77.

https://doi.org/10.1093/af/vfz020

PMid:32002264 PMCid:PMC6951987

Lessman CA. The developing zebrafish (Danio rerio): A vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today. 2011;93(3):268-80.

https://doi.org/10.1002/bdrc.20212

PMid:21932435

Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR. Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol. 2004;15(6):564-71.

https://doi.org/10.1016/j.copbio.2004.09.004

PMid:15560983

Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer's disease research. Front Genet. 2014;5:189.

https://doi.org/10.3389/fgene.2014.00189

PMid:25071820 PMCid:PMC4075077

Saleem S, Kannan RR. Zebrafish: an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov. 2018;4(1):1-13.

https://doi.org/10.1038/s41420-018-0109-7

PMid:30302279 PMCid:PMC6170431

Zang L, Maddison LA, Chen W. Zebrafish as a model for obesity and diabetes. Front Cell Dev Biol. 2018;6:1.

https://doi.org/10.3389/fcell.2018.00091

PMid:30177968 PMCid:PMC6110173

Bassett DI, Currie PD. The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet. 2003;12(suppl_2):R265-R70.

https://doi.org/10.1093/hmg/ddg279

PMid:14504264

Langenau DM. Cancer and Zebrafish: Mechanisms, Techniques, and Models. Adv Exp Med Biol. 2016;916:103-24.

Bhattarai P, Turgutalp B, Kizil C. Zebrafish as an Experimental and Preclinical Model for Alzheimer's Disease. ACS Chem Neurosci. 2022;13(20):2939-41.

https://doi.org/10.1021/acschemneuro.2c00583

PMid:36194560

Sharma A, Saneja A. Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today. 2022;27(5):1517-1522..

https://doi.org/10.1016/j.drudis.2022.02.011

PMid:35192925

Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C et al. Use of zebrafish in drug discovery toxicology. Chem Res Toxicol. 2019;33(1):95-118.

https://doi.org/10.1021/acs.chemrestox.9b00335

PMid:31625720 PMCid:PMC7162671

Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611-28.

https://doi.org/10.1038/s41573-021-00210-8

PMid:34117457 PMCid:PMC9210578

Moss JB, Koustubhan P, Greenman M, Parsons MJ, Walter I, Moss LG. Regeneration of the pancreas in adult zebrafish. Diabetes. 2009;58(8):1844-51.

https://doi.org/10.2337/db08-0628

PMid:19491207 PMCid:PMC2712797

Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ. 2018;60(6):393-9.

https://doi.org/10.1111/dgd.12565

PMid:30133710

Lu J, Liu KC, Schulz N, Karampelias C, Charbord J, Hilding A et al. IGFBP1 increases β-cell regeneration by promoting α-to β-cell transdifferentiation. EMBO J. 2016;35(18):2026-44.

https://doi.org/10.15252/embj.201592903

PMid:27516442 PMCid:PMC5116948

Wyett G, Gibert Y, Ellis M, Castillo HA, Kaslin J, Aston-Mourney K. Metformin, beta-cell development, and novel processes following beta-cell ablation in zebrafish. Endocrine. 2018;59(2):419-25.

https://doi.org/10.1007/s12020-017-1502-3

PMid:29274062

Janjuha S, Singh SP, Tsakmaki A, Gharavy SNM, Murawala P, Konantz J et al. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish. Elife. 2018;7:e32965.

https://doi.org/10.7554/eLife.32965

PMid:29624168 PMCid:PMC5943033

Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn. 2007;236(4):1025-35.

https://doi.org/10.1002/dvdy.21100

PMid:17326133

Mathias JR, Zhang Z, Saxena MT, Mumm JS. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish. 2014;11(2):85-97.

https://doi.org/10.1089/zeb.2013.0937

PMid:24428354 PMCid:PMC3992008

Pourghadamyari H, Rezaei M, Basiri M, Tahamtan Y, Asgari B, Hasani S-N et al. Generation of a Transgenic Zebrafish Model for Pancreatic Beta Cell Regeneration. Galen Med J. 2019;8:e1056.

https://doi.org/10.31661/gmj.v8i0.1056

PMid:34466457 PMCid:PMC8344119

Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307-18.

https://doi.org/10.1006/dbio.2002.0711

PMid:12167406

Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature. 2015;522(7554):56.

https://doi.org/10.1038/nature14425

PMid:25992545

Crawford AD, Liekens S, Kamuhabwa AR, Maes J, Munck S, Busson R et al. Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One. 2011;6(2):e14694.

https://doi.org/10.1371/journal.pone.0014694

PMid:21379387 PMCid:PMC3040759

He Z-H, Ge W, Yue GG-L, Bik-San Lau C, He M-F, But PP-H. Anti-angiogenic effects of the fruit of Alpinia oxyphylla. J Ethnopharmacol. 2010;132(2):443-9.

https://doi.org/10.1016/j.jep.2010.08.024

PMid:20723592

Bakkiyanathan A, Nathan JR, Ravikumar S, Gopalakrishnan TS, Aruldas FMM, Malathi R. Anti-angiogenic effects of theophylline on developing zebrafish (Danio rerio) embryos. Biomed Prev Nutr. 2012;2(3):174-8.

https://doi.org/10.1016/j.bionut.2012.03.001

Adams RP. Identification of essential oil components by gas chromatography quadrupole mass spectroscopy. 3rd ed Carol Stream. 2001;:.

Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253-310.

https://doi.org/10.1002/aja.1002030302

PMid:8589427

Fong TAT, Shawver LK, Sun L, Tang C, App H, Powell TJ et al. SU5416 Is a Potent and Selective Inhibitor of the Vascular Endothelial Growth Factor Receptor (Flk-1/KDR) That Inhibits Tyrosine Kinase Catalysis, Tumor Vascularization, and Growth of Multiple Tumor Types. Cancer Res. 1999;59(1):99-106.

Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM et al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab. 2012;15(6):885-94.

https://doi.org/10.1016/j.cmet.2012.04.018

PMid:22608007 PMCid:PMC3372708

Popović-Djordjević J, Cengiz M, Ozer MS, Sarikurkcu C. Calamintha incana: Essential oil composition and biological activity. Ind Crops Prod. 2019;128:162-6.

https://doi.org/10.1016/j.indcrop.2018.11.003

Hu J, Wang W, Dai J, Zhu L. Chemical composition and biological activity against Tribolium castaneum (Coleoptera: Tenebrionidae) of Artemisia brachyloba essential oil. Ind Crops Prod. 2019;128:29-37.

https://doi.org/10.1016/j.indcrop.2018.10.076

Ghiasy-Oskoee M, AghaAlikhani M, Sefidkon F, Mokhtassi-Bidgoli A, Ayyari M. Blessed thistle agronomic and phytochemical response to nitrogen and plant density. Ind Crops Prod. 2018;122:566-73.

https://doi.org/10.1016/j.indcrop.2018.06.027

Raiesi S, Nadjafi F, Hadian J, Kanani MR, Ayyari M. Autecological and Phytochemical Studies of Kelussia odoratissima Mozaff An Endangered Ethnomedicinal Plant of Iran. J Biol Act Prod Nat. 2013;3(4):285-94.

https://doi.org/10.1080/22311866.2013.782748

Lao SC, Li SP, Kan KKW, Li P, Wan JB, Wang YT et al. Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction. Anal Chim Acta. 2004;526(2):131-7.

https://doi.org/10.1016/j.aca.2004.09.050

Lü J-L, Duan J-A, Tang Y-P, Yang N-Y, Zhang L-B. Phthalide mono- and dimers from the radix of Angelica sinensis. Biochem Syst Ecol. 2009;37(4):405-11.

https://doi.org/10.1016/j.bse.2009.04.007

Lin L-Z, He X-G, Lian L-Z, King W, Elliott J. Liquid chromatographic-electrospray mass spectrometric study of the phthalides of Angelica sinensis and chemical changes of Z-ligustilide. J Chromatogr A. 1998;810(1):71-9.

https://doi.org/10.1016/S0021-9673(98)00201-5

Deng S, Chen S-N, Lu J, Wang ZJ, Nikolic D, Breemen RBv et al. GABAergic phthalide dimers from Angelica sinensis (Oliv). Diels. 2006;17(6):398-405.

https://doi.org/10.1002/pca.937

PMid:17144247

Raeisi S, Mirjalili MH, Nadjafi F, Hadian J. Variability in the essential oil content and composition in different plant organs of Kelussia odoratissima Mozaff (Apiaceae) growing wild in Iran. J Essent Oil Res. 2015;27(4):283-8.

https://doi.org/10.1080/10412905.2015.1025917

Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol. 2013;9(2):97.

https://doi.org/10.1038/nchembio.1136

PMid:23201900 PMCid:PMC3552031

Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW et al. The angiogenic effects of Angelica sinensis extract on HUVEC in vitro and zebrafish in vivo. J Cell Biochem. 2008;103(1):195-211.

https://doi.org/10.1002/jcb.21403

PMid:17497682

Chen M-C, Hsu W-L, Chang W-L, Chou T-C. Antiangiogenic activity of phthalides-enriched Angelica Sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer. Sci Rep. 2017;7(1):5376.

https://doi.org/10.1038/s41598-017-05512-9

PMid:28710377 PMCid:PMC5511260

Gholamhoseinian A, Fallah H, Sharifi-far F, Mirtajaddini M. The Inhibitory Effect of Some Iranian Plants Extracts on the Alpha Glucosidase. Iran J Basic Med Sci. 2008;11(1):1-9.

Rahimzadeh M, Jahanshahi S, Moein S, Moein MR. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts. Iran J Basic Med Sci. 2014;17(6):465-9.

Orhan N, Hoşbaş S, Deliorman Orhan D, Aslan M, Ergun F. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey. Iran J Basic Med Sci. 2014;17(6):426-32.

Hu Y, Cheng X, Cao F, Huang A, Tavis JE. β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity. Antivir Res. 2013;99(3):221-9.

https://doi.org/10.1016/j.antiviral.2013.06.007

PMid:23796982

Himmel DM, Maegley KA, Pauly TA, Bauman JD, Das K, Dharia C et al. Structure of HIV-1 Reverse Transcriptase with the Inhibitor β-Thujaplicinol Bound at the RNase H Active Site. Structure. 2009;17(12):1625-35.

https://doi.org/10.1016/j.str.2009.09.016

PMid:20004166 PMCid:PMC3365588

Wang K, Cao P, Shui W, Yang Q, Tang Z, Zhang Y. Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation of glycogen levels and reduction of inflammatory factors. Food Funct. 2015;6(3):902-9.

https://doi.org/10.1039/C4FO00859F

PMid:25630053

Wang K, Tang Z, Zheng Z, Cao P, Shui W, Li Q et al. Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin-induced type 2 diabetic BALB/c mice. Food Funct. 2016;7(12):4889-97.

https://doi.org/10.1039/C6FO01196A

PMid:27813540

留言 (0)

沒有登入
gif