León A, Del-Ángel M, Ávila JL, Delgado G. Phthalides: distribution in nature, chemical reactivity, synthesis, and biological activity. Progress in the chemistry of organic natural products. 2017:127-246.
https://doi.org/10.1007/978-3-319-45618-8_2
PMid:28160212
Ahmadipour B, Hassanpour H, Asadi E, Khajali F, Rafiei F, Khajali F. Kelussia odoratissima Mozzaf - A promising medicinal herb to prevent pulmonary hypertension in broiler chickens reared at high altitude. J Ethnopharmacol. 2015;159:49-54.
https://doi.org/10.1016/j.jep.2014.10.043
PMid:25446599
Omidbaigi R, Sefidkon F, Saeedi K. Essential Oil Content and Composition of Kelussia odoratissima Mozaff as an Iranian Endemic Plant. J Essent Oil-Bear Plants. 2008;11(6):594-7.
https://doi.org/10.1080/0972060X.2008.10643672
Wei W-L, Zeng R, Gu C-M, Qu Y, Huang L-F. Angelica sinensis in China-A review of botanical profile, ethnopharmacology, phytochemistry and chemical analysis. J Ethnopharmacol. 2016;190:116-41.
https://doi.org/10.1016/j.jep.2016.05.023
PMid:27211015
Gao Q, Li J, Cheung JKH, Duan J, Ding A, Cheung AWH et al. Verification of the formulation and efficacy of Danggui Buxue Tang (a decoction of Radix Astragali and Radix Angelicae Sinensis): an exemplifying systematic approach to revealing the complexity of Chinese herbal medicine formulae. Chin Med. 2007;2(1):12.
https://doi.org/10.1186/1749-8546-2-12
PMid:18045504 PMCid:PMC2140262
Su S, Cui W, Zhou W, Duan J-a, Shang E, Tang Y. Chemical fingerprinting and quantitative constituent analysis of Siwu decoction categorized formulae by UPLC-QTOF/MS/MS and HPLC-DAD. Chin Med. 2013;8(1):5.
https://doi.org/10.1186/1749-8546-8-5
PMid:23453004 PMCid:PMC3602048
Lieschke GJ, Currie PD. Animal models of human disease: zebrafish swim into view. Nat Rev Genet. 2007;8(5):353.
https://doi.org/10.1038/nrg2091
PMid:17440532
Seto S-W, Kiat H, Lee SM, Bensoussan A, Sun Y-T, Hoi MP et al. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. Eur J Pharmacol. 2015;768:77-86.
https://doi.org/10.1016/j.ejphar.2015.10.031
PMid:26494630
Salmi TM, Tan VW, Cox AG. Dissecting metabolism using zebrafish models of disease. Biochem Soc Trans. 2019;47(1):305-15.
https://doi.org/10.1042/BST20180335
PMid:30700500
Noorimotlagh Z, Babaie M, Safdarian M, Ghadiri T, Rahimi-Movaghar V. Mechanisms of spinal cord injury regeneration in zebrafish: a systematic review. Iran J Basic Med Sci. 2017;20(12):1287-96.
Teame T, Zhang Z, Ran C, Zhang H, Yang Y, Ding Q et al. The use of zebrafish (Danio rerio) as biomedical models. Anim Front. 2019;9(3):68-77.
https://doi.org/10.1093/af/vfz020
PMid:32002264 PMCid:PMC6951987
Lessman CA. The developing zebrafish (Danio rerio): A vertebrate model for high-throughput screening of chemical libraries. Birth Defects Res C Embryo Today. 2011;93(3):268-80.
https://doi.org/10.1002/bdrc.20212
PMid:21932435
Love DR, Pichler FB, Dodd A, Copp BR, Greenwood DR. Technology for high-throughput screens: the present and future using zebrafish. Curr Opin Biotechnol. 2004;15(6):564-71.
https://doi.org/10.1016/j.copbio.2004.09.004
PMid:15560983
Newman M, Ebrahimie E, Lardelli M. Using the zebrafish model for Alzheimer's disease research. Front Genet. 2014;5:189.
https://doi.org/10.3389/fgene.2014.00189
PMid:25071820 PMCid:PMC4075077
Saleem S, Kannan RR. Zebrafish: an emerging real-time model system to study Alzheimer's disease and neurospecific drug discovery. Cell Death Discov. 2018;4(1):1-13.
https://doi.org/10.1038/s41420-018-0109-7
PMid:30302279 PMCid:PMC6170431
Zang L, Maddison LA, Chen W. Zebrafish as a model for obesity and diabetes. Front Cell Dev Biol. 2018;6:1.
https://doi.org/10.3389/fcell.2018.00091
PMid:30177968 PMCid:PMC6110173
Bassett DI, Currie PD. The zebrafish as a model for muscular dystrophy and congenital myopathy. Hum Mol Genet. 2003;12(suppl_2):R265-R70.
https://doi.org/10.1093/hmg/ddg279
PMid:14504264
Langenau DM. Cancer and Zebrafish: Mechanisms, Techniques, and Models. Adv Exp Med Biol. 2016;916:103-24.
Bhattarai P, Turgutalp B, Kizil C. Zebrafish as an Experimental and Preclinical Model for Alzheimer's Disease. ACS Chem Neurosci. 2022;13(20):2939-41.
https://doi.org/10.1021/acschemneuro.2c00583
PMid:36194560
Sharma A, Saneja A. Zebrafish as a powerful alternative model organism for preclinical investigation of nanomedicines. Drug Discov Today. 2022;27(5):1517-1522..
https://doi.org/10.1016/j.drudis.2022.02.011
PMid:35192925
Cassar S, Adatto I, Freeman JL, Gamse JT, Iturria I, Lawrence C et al. Use of zebrafish in drug discovery toxicology. Chem Res Toxicol. 2019;33(1):95-118.
https://doi.org/10.1021/acs.chemrestox.9b00335
PMid:31625720 PMCid:PMC7162671
Patton EE, Zon LI, Langenau DM. Zebrafish disease models in drug discovery: from preclinical modelling to clinical trials. Nat Rev Drug Discov. 2021;20(8):611-28.
https://doi.org/10.1038/s41573-021-00210-8
PMid:34117457 PMCid:PMC9210578
Moss JB, Koustubhan P, Greenman M, Parsons MJ, Walter I, Moss LG. Regeneration of the pancreas in adult zebrafish. Diabetes. 2009;58(8):1844-51.
https://doi.org/10.2337/db08-0628
PMid:19491207 PMCid:PMC2712797
Matsuda H. Zebrafish as a model for studying functional pancreatic β cells development and regeneration. Dev Growth Differ. 2018;60(6):393-9.
https://doi.org/10.1111/dgd.12565
PMid:30133710
Lu J, Liu KC, Schulz N, Karampelias C, Charbord J, Hilding A et al. IGFBP1 increases β-cell regeneration by promoting α-to β-cell transdifferentiation. EMBO J. 2016;35(18):2026-44.
https://doi.org/10.15252/embj.201592903
PMid:27516442 PMCid:PMC5116948
Wyett G, Gibert Y, Ellis M, Castillo HA, Kaslin J, Aston-Mourney K. Metformin, beta-cell development, and novel processes following beta-cell ablation in zebrafish. Endocrine. 2018;59(2):419-25.
https://doi.org/10.1007/s12020-017-1502-3
PMid:29274062
Janjuha S, Singh SP, Tsakmaki A, Gharavy SNM, Murawala P, Konantz J et al. Age-related islet inflammation marks the proliferative decline of pancreatic beta-cells in zebrafish. Elife. 2018;7:e32965.
https://doi.org/10.7554/eLife.32965
PMid:29624168 PMCid:PMC5943033
Curado S, Anderson RM, Jungblut B, Mumm J, Schroeter E, Stainier DY. Conditional targeted cell ablation in zebrafish: a new tool for regeneration studies. Dev Dyn. 2007;236(4):1025-35.
https://doi.org/10.1002/dvdy.21100
PMid:17326133
Mathias JR, Zhang Z, Saxena MT, Mumm JS. Enhanced cell-specific ablation in zebrafish using a triple mutant of Escherichia coli nitroreductase. Zebrafish. 2014;11(2):85-97.
https://doi.org/10.1089/zeb.2013.0937
PMid:24428354 PMCid:PMC3992008
Pourghadamyari H, Rezaei M, Basiri M, Tahamtan Y, Asgari B, Hasani S-N et al. Generation of a Transgenic Zebrafish Model for Pancreatic Beta Cell Regeneration. Galen Med J. 2019;8:e1056.
https://doi.org/10.31661/gmj.v8i0.1056
PMid:34466457 PMCid:PMC8344119
Lawson ND, Weinstein BM. In vivo imaging of embryonic vascular development using transgenic zebrafish. Dev Biol. 2002;248(2):307-18.
https://doi.org/10.1006/dbio.2002.0711
PMid:12167406
Nicenboim J, Malkinson G, Lupo T, Asaf L, Sela Y, Mayseless O et al. Lymphatic vessels arise from specialized angioblasts within a venous niche. Nature. 2015;522(7554):56.
https://doi.org/10.1038/nature14425
PMid:25992545
Crawford AD, Liekens S, Kamuhabwa AR, Maes J, Munck S, Busson R et al. Zebrafish bioassay-guided natural product discovery: isolation of angiogenesis inhibitors from East African medicinal plants. PLoS One. 2011;6(2):e14694.
https://doi.org/10.1371/journal.pone.0014694
PMid:21379387 PMCid:PMC3040759
He Z-H, Ge W, Yue GG-L, Bik-San Lau C, He M-F, But PP-H. Anti-angiogenic effects of the fruit of Alpinia oxyphylla. J Ethnopharmacol. 2010;132(2):443-9.
https://doi.org/10.1016/j.jep.2010.08.024
PMid:20723592
Bakkiyanathan A, Nathan JR, Ravikumar S, Gopalakrishnan TS, Aruldas FMM, Malathi R. Anti-angiogenic effects of theophylline on developing zebrafish (Danio rerio) embryos. Biomed Prev Nutr. 2012;2(3):174-8.
https://doi.org/10.1016/j.bionut.2012.03.001
Adams RP. Identification of essential oil components by gas chromatography quadrupole mass spectroscopy. 3rd ed Carol Stream. 2001;:.
Kimmel CB, Ballard WW, Kimmel SR, Ullmann B, Schilling TF. Stages of embryonic development of the zebrafish. Dev Dyn. 1995;203(3):253-310.
https://doi.org/10.1002/aja.1002030302
PMid:8589427
Fong TAT, Shawver LK, Sun L, Tang C, App H, Powell TJ et al. SU5416 Is a Potent and Selective Inhibitor of the Vascular Endothelial Growth Factor Receptor (Flk-1/KDR) That Inhibits Tyrosine Kinase Catalysis, Tumor Vascularization, and Growth of Multiple Tumor Types. Cancer Res. 1999;59(1):99-106.
Andersson O, Adams BA, Yoo D, Ellis GC, Gut P, Anderson RM et al. Adenosine signaling promotes regeneration of pancreatic β cells in vivo. Cell Metab. 2012;15(6):885-94.
https://doi.org/10.1016/j.cmet.2012.04.018
PMid:22608007 PMCid:PMC3372708
Popović-Djordjević J, Cengiz M, Ozer MS, Sarikurkcu C. Calamintha incana: Essential oil composition and biological activity. Ind Crops Prod. 2019;128:162-6.
https://doi.org/10.1016/j.indcrop.2018.11.003
Hu J, Wang W, Dai J, Zhu L. Chemical composition and biological activity against Tribolium castaneum (Coleoptera: Tenebrionidae) of Artemisia brachyloba essential oil. Ind Crops Prod. 2019;128:29-37.
https://doi.org/10.1016/j.indcrop.2018.10.076
Ghiasy-Oskoee M, AghaAlikhani M, Sefidkon F, Mokhtassi-Bidgoli A, Ayyari M. Blessed thistle agronomic and phytochemical response to nitrogen and plant density. Ind Crops Prod. 2018;122:566-73.
https://doi.org/10.1016/j.indcrop.2018.06.027
Raiesi S, Nadjafi F, Hadian J, Kanani MR, Ayyari M. Autecological and Phytochemical Studies of Kelussia odoratissima Mozaff An Endangered Ethnomedicinal Plant of Iran. J Biol Act Prod Nat. 2013;3(4):285-94.
https://doi.org/10.1080/22311866.2013.782748
Lao SC, Li SP, Kan KKW, Li P, Wan JB, Wang YT et al. Identification and quantification of 13 components in Angelica sinensis (Danggui) by gas chromatography-mass spectrometry coupled with pressurized liquid extraction. Anal Chim Acta. 2004;526(2):131-7.
https://doi.org/10.1016/j.aca.2004.09.050
Lü J-L, Duan J-A, Tang Y-P, Yang N-Y, Zhang L-B. Phthalide mono- and dimers from the radix of Angelica sinensis. Biochem Syst Ecol. 2009;37(4):405-11.
https://doi.org/10.1016/j.bse.2009.04.007
Lin L-Z, He X-G, Lian L-Z, King W, Elliott J. Liquid chromatographic-electrospray mass spectrometric study of the phthalides of Angelica sinensis and chemical changes of Z-ligustilide. J Chromatogr A. 1998;810(1):71-9.
https://doi.org/10.1016/S0021-9673(98)00201-5
Deng S, Chen S-N, Lu J, Wang ZJ, Nikolic D, Breemen RBv et al. GABAergic phthalide dimers from Angelica sinensis (Oliv). Diels. 2006;17(6):398-405.
https://doi.org/10.1002/pca.937
PMid:17144247
Raeisi S, Mirjalili MH, Nadjafi F, Hadian J. Variability in the essential oil content and composition in different plant organs of Kelussia odoratissima Mozaff (Apiaceae) growing wild in Iran. J Essent Oil Res. 2015;27(4):283-8.
https://doi.org/10.1080/10412905.2015.1025917
Gut P, Baeza-Raja B, Andersson O, Hasenkamp L, Hsiao J, Hesselson D et al. Whole-organism screening for gluconeogenesis identifies activators of fasting metabolism. Nat Chem Biol. 2013;9(2):97.
https://doi.org/10.1038/nchembio.1136
PMid:23201900 PMCid:PMC3552031
Lam HW, Lin HC, Lao SC, Gao JL, Hong SJ, Leong CW et al. The angiogenic effects of Angelica sinensis extract on HUVEC in vitro and zebrafish in vivo. J Cell Biochem. 2008;103(1):195-211.
https://doi.org/10.1002/jcb.21403
PMid:17497682
Chen M-C, Hsu W-L, Chang W-L, Chou T-C. Antiangiogenic activity of phthalides-enriched Angelica Sinensis extract by suppressing WSB-1/pVHL/HIF-1α/VEGF signaling in bladder cancer. Sci Rep. 2017;7(1):5376.
https://doi.org/10.1038/s41598-017-05512-9
PMid:28710377 PMCid:PMC5511260
Gholamhoseinian A, Fallah H, Sharifi-far F, Mirtajaddini M. The Inhibitory Effect of Some Iranian Plants Extracts on the Alpha Glucosidase. Iran J Basic Med Sci. 2008;11(1):1-9.
Rahimzadeh M, Jahanshahi S, Moein S, Moein MR. Evaluation of alpha- amylase inhibition by Urtica dioica and Juglans regia extracts. Iran J Basic Med Sci. 2014;17(6):465-9.
Orhan N, Hoşbaş S, Deliorman Orhan D, Aslan M, Ergun F. Enzyme inhibitory and radical scavenging effects of some antidiabetic plants of Turkey. Iran J Basic Med Sci. 2014;17(6):426-32.
Hu Y, Cheng X, Cao F, Huang A, Tavis JE. β-Thujaplicinol inhibits hepatitis B virus replication by blocking the viral ribonuclease H activity. Antivir Res. 2013;99(3):221-9.
https://doi.org/10.1016/j.antiviral.2013.06.007
PMid:23796982
Himmel DM, Maegley KA, Pauly TA, Bauman JD, Das K, Dharia C et al. Structure of HIV-1 Reverse Transcriptase with the Inhibitor β-Thujaplicinol Bound at the RNase H Active Site. Structure. 2009;17(12):1625-35.
https://doi.org/10.1016/j.str.2009.09.016
PMid:20004166 PMCid:PMC3365588
Wang K, Cao P, Shui W, Yang Q, Tang Z, Zhang Y. Angelica sinensis polysaccharide regulates glucose and lipid metabolism disorder in prediabetic and streptozotocin-induced diabetic mice through the elevation of glycogen levels and reduction of inflammatory factors. Food Funct. 2015;6(3):902-9.
https://doi.org/10.1039/C4FO00859F
PMid:25630053
Wang K, Tang Z, Zheng Z, Cao P, Shui W, Li Q et al. Protective effects of Angelica sinensis polysaccharide against hyperglycemia and liver injury in multiple low-dose streptozotocin-induced type 2 diabetic BALB/c mice. Food Funct. 2016;7(12):4889-97.
https://doi.org/10.1039/C6FO01196A
PMid:27813540
留言 (0)