Escobar-Morreale HF. Polycystic ovary syndrome: definition, aetiology, diagnosis and treatment. Nat Rev Endocrinol. 2018;14(5):270–84.
Bulsara J, Patel P, Soni A, Acharya S. A review: brief insight into polycystic ovarian syndrome. Endocr Metab Sci. 2021;3:100085.
McCartney CR, Marshall JC. Polycystic ovary syndrome. N Engl J Med. 2016;375(1):54–64.
Article PubMed PubMed Central Google Scholar
Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016–23.
Article CAS PubMed PubMed Central Google Scholar
Chopra I, Li H, Wang H, Webster K. Phosphorylation of the insulin receptor by AMP-activated protein kinase (AMPK) promotes ligand-independent activation of the insulin signalling pathway in rodent muscle. Diabetologia. 2012;55(3):783–94.
Article CAS PubMed Google Scholar
Jeon S-M. Regulation and function of AMPK in physiology and diseases. Exp Mol Med. 2016;48(7):e245-e.
Article CAS PubMed PubMed Central Google Scholar
Bachanek M, Abdalla N, Cendrowski K, Sawicki W. Value of ultrasonography in the diagnosis of polycystic ovary syndrome–literature review. J Ultrasonogr. 2015;15(63):410.
Taher MG, Mohammed MR, Al-Mahdawi MAS, Halaf NKA, Jalil AT, Alsandook T (2023) The role of protein kinases in diabetic neuropathic pain: an update review. J Diabetes Metab Disord 1-8.
Article CAS PubMed PubMed Central Google Scholar
Waldstreicher J, Santoro NF, Hall JE, Filicori M, Crowley WF. Hyperfunction of the hypothalamic-pituitary axis in women with polycystic ovarian disease: indirect evidence for partial gonadotroph desensitization. J Clin Endocrinol Metabol. 1988;66(1):165–72.
Cardone VS. GnRH antagonists for treatment of polycystic ovarian syndrome. Fertil Steril. 2003;80:25–31.
Eagleson CA, Gingrich MB, Pastor CL, Arora TK, Burt CM, Evans WS, et al. Polycystic ovarian syndrome: evidence that flutamide restores sensitivity of the gonadotropin-releasing hormone pulse generator to inhibition by estradiol and progesterone. J Clin Endocrinol Metab. 2000;85(11):4047–52.
Chaudhari N, Dawalbhakta M, Nampoothiri L. GnRH dysregulation in polycystic ovarian syndrome (PCOS) is a manifestation of an altered neurotransmitter profile. Reprod Biol Endocrinol. 2018;16(1):1–13.
Silva MS, Desroziers E, Hessler S, Prescott M, Coyle C, Herbison AE, et al. Activation of arcuate nucleus GABA neurons promotes luteinizing hormone secretion and reproductive dysfunction: implications for polycystic ovary syndrome. EBioMedicine. 2019;44:582–96.
Article PubMed PubMed Central Google Scholar
Berg T, Silveira MA, Moenter SM. Prepubertal development of GABAergic transmission to gonadotropin-releasing hormone (GnRH) neurons and postsynaptic response are altered by prenatal androgenization. J Neurosci. 2018;38(9):2283–93.
Article CAS PubMed PubMed Central Google Scholar
Catteau-Jonard S, Dewailly D. Pathophysiology of polycystic ovary syndrome: the role of hyperandrogenism. Polycystic Ovary Syndr. 2013;40:22–7.
Rosenfield RL, Ehrmann DA. The pathogenesis of polycystic ovary syndrome (PCOS): the hypothesis of PCOS as functional ovarian hyperandrogenism revisited. Endocr Rev. 2016;37(5):467–520.
Article CAS PubMed PubMed Central Google Scholar
Miller WL. Steroidogenic acute regulatory protein (StAR) a novel mitochondrial cholesterol transporter. Biochim Biophys Acta (BBA) Mol Cell Biol Lipids. 2007;1771(6):663–76.
Rasmussen MK, Ekstrand B, Zamaratskaia G. Regulation of 3β-Hydroxysteroid dehydrogenase/∆5-∆4 isomerase: a review. Int J Mol Sci. 2013;14(9):17926–42.
Article CAS PubMed PubMed Central Google Scholar
Ma Y, Andrisse S, Chen Y, Childress S, Xue P, Wang Z, et al. Androgen receptor in the ovary theca cells plays a critical role in androgen-induced reproductive dysfunction. Endocrinology. 2017;158(1):98–108.
Rashtchizadeh N, Argani H, Ghorbanihaghjo A, Sanajou D, Hosseini V, Dastmalchi S, et al. AMPK: a promising molecular target for combating cisplatin toxicities. Biochem Pharmacol. 2019;163:94–100.
Article CAS PubMed Google Scholar
Seza E, Güderer I, Ermis Ç, Banerjee S. PRKAA1 (protein kinase AMP-activated catalytic subunit alpha 1). Atlas Genet Cytogenet Oncol Haematol. 2019;23(5).
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012;11(2):230–41.
Article CAS PubMed Google Scholar
Boudeau J, Sapkota G, Alessi DR. LKB1, a protein kinase regulating cell proliferation and polarity. FEBS Lett. 2003;546(1):159–65.
Article CAS PubMed Google Scholar
Woods A, Dickerson K, Heath R, Hong S-P, Momcilovic M, Johnstone SR, et al. Ca2+/calmodulin-dependent protein kinase kinase-β acts upstream of AMP-activated protein kinase in mammalian cells. Cell Metabol. 2005;2(1):21–33.
An H, Wang Y, Qin C, Li M, Maheshwari A, He L. The importance of the AMPK gamma 1 subunit in metformin suppression of liver glucose production. Sci Rep. 2020;10(1):1–10.
Fujiwara Y, Kawaguchi Y, Fujimoto T, Kanayama N, Magari M, Tokumitsu H. Differential AMP-activated protein kinase (AMPK) recognition mechanism of Ca2+/calmodulin-dependent protein kinase kinase isoforms. J Biol Chem. 2016;291(26):13802–8.
Article CAS PubMed PubMed Central Google Scholar
Joseph BK, Liu H-Y, Francisco J, Pandya D, Donigan M, Gallo-Ebert C, et al. Inhibition of AMP kinase by the protein phosphatase 2A heterotrimer, PP2APpp2r2d. J Biol Chem. 2015;290(17):10588–98.
Article CAS PubMed PubMed Central Google Scholar
Wischhusen J, Melero I, Fridman WH. Growth/differentiation factor-15 (GDF-15): from biomarker to novel targetable immune checkpoint. Front Immunol. 2020;11:951.
Article CAS PubMed PubMed Central Google Scholar
Aguilar-Recarte D, Barroso E, Gumà A, Pizarro-Delgado J, Peña L, Ruart M, et al. GDF15 mediates the metabolic effects of PPARβ/δ by activating AMPK. Cell Rep. 2021;36(6):109501.
Article CAS PubMed Google Scholar
Diamanti-Kandarakis E, Papavassiliou AG. Molecular mechanisms of insulin resistance in polycystic ovary syndrome. Trends Mol Med. 2006;12(7):324–32.
Article CAS PubMed Google Scholar
Ciaraldi TP, Aroda V, Mudaliar S, Chang RJ, Henry RR. Polycystic ovary syndrome is associated with tissue-specific differences in insulin resistance. J Clin Endocrinol Metabol. 2009;94(1):157–63.
Moret M, Stettler R, Rodieux F, Gaillard RC, Waeber G, Wirthner D, et al. Insulin modulation of luteinizing hormone secretion in normal female volunteers and lean polycystic ovary syndrome patients. Neuroendocrinology. 2009;89(2):131–9.
Article CAS PubMed Google Scholar
Tosi F, Negri C, Perrone F, Dorizzi R, Castello R, Bonora E, et al. Hyperinsulinemia amplifies GnRH agonist stimulated ovarian steroid secretion in women with polycystic ovary syndrome. J Clin Endocrinol. 2012;97(5):1712–9.
Vlavcheski F, Den Hartogh DJ, Giacca A, Tsiani E. Amelioration of high-insulin-induced skeletal muscle cell insulin resistance by resveratrol is linked to activation of AMPK and restoration of GLUT4 translocation. Nutrients. 2020;12(4):914.
Article CAS PubMed PubMed Central Google Scholar
Zhou Y-J, Xu N, Zhang X-C, Zhu Y-Y, Liu S-W, Chang Y-N. Chrysin improves glucose and lipid metabolism disorders by regulating the AMPK/PI3K/AKT signaling pathway in insulin-resistant HepG2 cells and HFD/STZ-induced C57BL/6J mice. J Agric Food Chem. 2021;69(20):5618–27.
Article CAS PubMed Google Scholar
Guo S, Wang G, Yang Z. Ligustilide alleviates the insulin resistance, lipid accumulation, and pathological injury with elevated phosphorylated AMPK level in rats with diabetes mellitus. J Recept Signal Transd. 2021;41(1):85–92.
Zhang Z, Zhao H, Wang A. Oleuropein alleviates gestational diabetes mellitus by activating AMPK signaling. Endocr Connections. 2021;10(1):45–53.
Zheng S-l, Li Z-Y, Song J, Liu J-M, Miao C-Y. Metrnl: a secreted protein with new emerging functions. Acta Pharmacol Sin. 2016;37(5):571–9.
Article CAS PubMed PubMed Central Google Scholar
Jung TW, Lee SH, Kim H-C, Bang JS, AM AE-A, Hacımüftüoğlu A, et al. METRNL attenuates lipid-induced inflammation and insulin resistance via AMPK or PPARδ-dependent pathways in skeletal muscle of mice. Exp Mol Med. 2018;50(9):1–11.
留言 (0)