Nitrile-Hydrolyzing Haloalkalitolerant Rhodococci of Soda Sludge Storage

Brito KD, Vasconcelos SF, Farias Neto GF, Damasceno AS, Figueirкdo MF, Ramos WB, Brito RP (2018) Semi-batch industrial process of nitriles production: dynamic simulation and validation. Comput Chem Eng 119:38–45. https://doi.org/10.1016/j.compchemeng.2018.08.013

Article  CAS  Google Scholar 

Cheng Z, Xia Y, Zhou Z (2020) Recent advances and promises in nitrile hydratase: from mechanism to industrial applications. Front Bioeng Biotechnol 8:352. https://doi.org/10.3389/fbioe.2020.00352

Article  PubMed  PubMed Central  Google Scholar 

Heald SC, Brandão PF, Hardicre R, Bull AT (2001) Physiology, biochemistry and taxonomy of deep-sea nitrile metabolising Rhodococcus strains. Antonie Van Leeuwenhoek 80:169–183. https://doi.org/10.1023/A:1012227302373

Article  CAS  PubMed  Google Scholar 

Demakov VA, Maksimov AY, Kuznetsova MV, Ovechkina GV, Remezovskaya NB, Maksimova YG (2007) Biological diversity of nitrile-metabolizing bacteria in anthropogenically altered soils of Perm krai. Ekologiya 3:1–6. https://doi.org/10.1134/S1067413607030046

Article  CAS  Google Scholar 

Rapheeha OKL, Roux-van der Merwe MP, Badenhorst J, Chhiba V, Bode ML, Mathiba K, Brady D (2016) Hydrolysis of nitriles by soil bacteria: variation with soil origin. J Appl Microbiol 122:686–697. https://doi.org/10.1111/jam.13367

Article  CAS  Google Scholar 

Egelkamp R, Schneider D, Hertel R, Daniel R (2017) Nitrile-degrading bacteria isolated from compost. Front Environ Sci 5:56. https://doi.org/10.3389/fenvs.2017.00056

Article  Google Scholar 

Rädisch R, Pátek M, Křístková B, Winkler M, Křen V, Martínková L (2022) Metabolism of aldoximes and nitriles in plant-associated bacteria and its potential in plant-bacteria interactions. Microorganisms 10:549. https://doi.org/10.3390/microorganisms10030549

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martínková L (2019) Nitrile metabolism in fungi: A review of its key enzymes nitrilases with focus on their biotechnological impact. Fungal Biol Rev 33:149–157. https://doi.org/10.1016/j.fbr.2018.11.002

Article  Google Scholar 

Martínková L, Uhnáková B, Pátek M, Nesvera J, Křen V (2009) Biodegradation potential of the genus Rhodococcus. Environ Int 35:162–177. https://doi.org/10.1016/j.envint.2008.07.018

Article  CAS  PubMed  Google Scholar 

Debabov VG, Yanenko AS (2011) Biocatalytic hydrolysis of nitriles. Rev J Chem 1:385–402. https://doi.org/10.1134/S2079978011030010

Article  Google Scholar 

Shen J-D, Cai X, Liu Z-Q, Zheng Y-G (2020) Nitrilase: a promising biocatalyst in industrial applications for green chemistry. Crit Rev Biotechnol 41:72–93. https://doi.org/10.1080/07388551.2020.1827367

Article  CAS  PubMed  Google Scholar 

Sorokin DY, Van Pelt S, Tourova TP, Takaichi S, Muyzer G (2007) Acetonitrile degradation under haloalkaline conditions by Natronocella acetinitrilica gen. nov., sp. Nov. Microbiology 153:1157–1164. https://doi.org/10.1099/mic.0.2006/004150-0

Article  CAS  PubMed  Google Scholar 

Sorokin DY, Van Pelt S, Tourova TP, Muyzer G (2007) Microbial isobutyronitrile utilization under haloalkaline conditions. Appl Environ Microbiol 73:5574–5579. https://doi.org/10.1128/AEM.00342-07

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chmura A, Shapovalova AA, Van Pelt S, Van Rantwijk F, Tourova TP, Muyzer G, Sorokin DY (2008) Utilization of arylaliphatic nitriles by haloalkaliphilic Halomonas nitrilicus sp. nov. isolated from soda soils. Appl Microbiol Biotechnol 81:371–378. https://doi.org/10.1007/s00253-008-1685-x

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sorokin DY, Van Pelt S, Tourova TP (2008) Utilization of aliphatic nitriles under haloalkaline conditions by Bacillus alkalinitrilicus sp. Nov. isolated from soda solonchak soil. FEMS Microbiol Lett 288:235–240. https://doi.org/10.1111/j.1574-6968.2008.01353.x

Article  CAS  PubMed  Google Scholar 

Singh P, Kumari A, Attri C, Seth A (2017) Enhanced production of NHase of alkali stable Rhodococcus pyridinivorans NIT 36 and its application in acrylamide production. Int J Biol Pharm Allied Sci 6:278–299

CAS  Google Scholar 

Kalwasińska A, Felföldi T, Szabó A, Deja-Sikora E, Kosobucki P, Walczak M (2017) Microbial communities associated with the anthropogenic, highly alkaline environment of a saline soda lime, Poland. Antonie Van Leeuwenhoek 110:945–962. https://doi.org/10.1007/s10482-017-0866-y

Article  CAS  PubMed  PubMed Central  Google Scholar 

Shilova AV, Maksimov AY, Maksimova YG (2021) Isolation and identification of alkalitolerant bacteria with hydrolytic activity from a soda sludge storage. Microbiology 90:166–175. https://doi.org/10.1134/S0026261721020120

Article  CAS  Google Scholar 

Ivshina I, Bazhutin G, Tyumina E (2022) Rhodococcus strains as a good biotool for neutralizing pharmaceutical pollutants and obtaining therapeutically valuable products: through the past into the future. Front Microbiol 13:967127. https://doi.org/10.3389/fmicb.2022.967127

Article  PubMed  PubMed Central  Google Scholar 

Shilova AV, Maksimov AY, Maksimova YG (2020) Microbiome changes as an indicator of the recovery of natural environments at the soda sludge storage facility of Berezniki soda plant. Water Ecol 25:84–94. https://doi.org/10.23968/2305-3488.2020.25.1.84-94

Article  Google Scholar 

O’Toole G, Kaplan HB, Kolter R (2000) Biofilm formation as microbial development. Annu Rev Microbiol 54:49–79. https://doi.org/10.1146/annurev.micro.54.1.49

Article  CAS  PubMed  Google Scholar 

Hazarika SN, Thakur D (2020) Actinobacteria. In: Amaresan N, Kumar MS, Annapurna K, Kumar K, Sankaranarayanan A (eds) Beneficial microbes in agro-ecology. Academic Press, Cambridge, pp 443–476. https://doi.org/10.1016/B978-0-12-823414-3.00021-6

Chapter  Google Scholar 

Meklat A, Bouras N, Mokrane S, Zitouni A, Djemouai N, Klenk H-P, Sabaou N, Mathieu F (2020) Isolation, classification and antagonistic properties of alkalitolerant Actinobacteria from Algerian Saharan soils. Geomicrobiol J 37:826–836. https://doi.org/10.1080/01490451.2020.1786865

Article  CAS  Google Scholar 

Sharapova I (2023) The study of potentially lignocellulolytic actinobacteria Pseudonocardia sp. AI2. Indian J Microbiol 63:190–196. https://doi.org/10.1007/s12088-023-01069-6

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sun J, He X, Le Y, Al-Tohamy R, Ali SS (2024) Potential applications of extremophilic bacteria in the bioremediation of extreme environments contaminated with heavy metals. J Environ Manage 352:120081. https://doi.org/10.1016/j.jenvman.2024.120081

Article  CAS  PubMed  Google Scholar 

Kochhar N, Shrivastava S, Ghosh A, Rawat VS, Sodhi KK, Kumar M (2022) Perspectives on the microorganism of extreme environments and their applications. Curr Res Microb Sci 1:100134. https://doi.org/10.1016/j.crmicr.2022.100134

Article  CAS  Google Scholar 

Egelkamp R, Zimmermann T, Schneider D, Hertel R, Daniel R (2019) Impact of nitriles on bacterial communities. Front Environ Sci 7:103. https://doi.org/10.3389/fenvs.2019.00103

Article  Google Scholar 

Jeong SW, Choi YJ (2020) Extremophilic microorganisms for the treatment of toxic pollutants in the environment. Molecules 25:4916. https://doi.org/10.3390/molecules25214916

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sulistinah N, Sunarko B (2020) Biodegradation of acetonitrile and benzonitrile by a newly isolated Rhodococcus Pyridionvorans strain I-benzo from leather tanning waste. InIOP Conf Ser Earth Environ Sci 572:012022. https://doi.org/10.1088/1755-1315/572/1/012022

Article  Google Scholar 

Sorokin DY, Berben T, Melton ED et al (2014) Microbial diversity and biogeochemical cycling in soda lakes. Extremophiles 18:791–809. https://doi.org/10.1007/s00792-014-0670-9

Article  CAS  PubMed 

留言 (0)

沒有登入
gif