Transmission of delta band (0.5-4 Hz) oscillations from the globus pallidus to the substantia nigra pars reticulata in dopamine depletion

Abbott, L. F., Varela, J., Sen, K., & Nelson, S. (1997). Synaptic depression and cortical gain control. Science, 275(5297), 221–224.

Article  Google Scholar 

Abdi, A., Mallet, N., Mohamed, F. Y., Sharott, A., Dodson, P. D., Nakamura, K. C., Suri, S., Avery, S. V., Larvin, J. T., Garas, F. N., et al. (2015). Prototypic and arkypallidal neurons in the dopamine-intact external globus pallidus. Journal of Neuroscience, 35(17), 6667–6688.

Article  CAS  PubMed  Google Scholar 

Aristieta, A., Ruiz-Ortega, J., Miguelez, C., Morera-Herreras, T., & Ugedo, L. (2016). Chronic l-dopa administration increases the firing rate but does not reverse enhanced slow frequency oscillatory activity and synchronization in substantia nigra pars reticulata neurons from 6-hydroxydopamine-lesioned rats. Neurobiology of Disease, 89, 88–100.

Article  CAS  PubMed  Google Scholar 

Boraud, T., Brown, P., Goldberg, J. A., Graybiel, A. M., Magill, P. J. (2005). Oscillations in the basal ganglia: the good, the bad, and the unexpected. In: The basal ganglia VIII, Springer, pp 1–24

Brown, P., Oliviero, A., Mazzone, P., Insola, A., Tonali, P., & Di Lazzaro, V. (2001). Dopamine dependency of oscillations between subthalamic nucleus and pallidum in parkinson’s disease. Journal of Neuroscience, 21(3), 1033–1038.

Article  CAS  PubMed  Google Scholar 

Cancedda, L., & Poo, M. M. (2009). Synapse formation and elimination: competition and the role of activity. In: Binder M, Hirokawa N, Windhorst U (eds) Encyclopedia of Neuroscience, Springer, Berlin, Heidelberg, pp 3932–3938

Cassidy, M., Mazzone, P., Oliviero, A., Insola, A., Tonali, P., Lazzaro, V. D., & Brown, P. (2002). Movement-related changes in synchronization in the human basal ganglia. Brain, 125(6), 1235–1246.

Article  PubMed  Google Scholar 

Connelly, W. M., Schulz, J. M., Lees, G., & Reynolds, J. N. (2010). Differential short-term plasticity at convergent inhibitory synapses to the substantia nigra pars reticulata. Journal of Neuroscience, 30(44), 14854–14861.

Article  CAS  PubMed  Google Scholar 

Corbit, V. L., Whalen, T. C., Zitelli, K. T., Crilly, S. Y., Rubin, J. E., & Gittis, A. H. (2016). Pallidostriatal projections promote \(\beta\) oscillations in a dopamine-depleted biophysical network model. Journal of Neuroscience, 36(20), 5556–5571.

Article  CAS  PubMed  Google Scholar 

DeLong, M., & Wichmann, T. (2010). Changing views of basal ganglia circuits and circuit disorders. Clinical EEG and neuroscience, 41(2), 61–67.

Article  PubMed  PubMed Central  Google Scholar 

Du, G., Zhuang, P., Hallett, M., Zhang, Y. Q., Li, J. Y., & Li, Y. J. (2018). Properties of oscillatory neuronal activity in the basal ganglia and thalamus in patients with parkinson’s disease. Translational neurodegeneration, 7(1), 1–13.

Article  Google Scholar 

Fino, E., Glowinski, J., & Venance, L. (2005). Bidirectional activity-dependent plasticity at corticostriatal synapses. Journal of Neuroscience, 25(49), 11279–11287.

Article  CAS  PubMed  Google Scholar 

Foster, N. N., Korobkova, L., Garcia, L., Gao, L., Becerra, M., Sherafat, Y., Peng, B., Li, X., Choi, J. H., Gou, L., et al. (2020). The mouse cortico-basal ganglia-thalamic network. bioRxiv

Freeze, B. S., Kravitz, A. V., Hammack, N., Berke, J. D., & Kreitzer, A. C. (2013). Control of basal ganglia output by direct and indirect pathway projection neurons. Journal of Neuroscience, 33(47), 18531–18539.

Article  CAS  PubMed  Google Scholar 

Gerstner, W., Kistler, W. M., Naud, R., Paninski, L. (2014). Neuronal dynamics: From single neurons to networks and models of cognition. Cambridge University Press

Halje, P., Brys, I., Mariman, J. J., da Cunha, C., Fuentes, R., & Petersson, P. (2019). Oscillations in cortico-basal ganglia circuits: Implications for parkinson’s disease and other neurologic and psychiatric conditions. Journal of Neurophysiology, 122(1), 203–231.

Article  PubMed  Google Scholar 

Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30(7), 357–364.

Article  CAS  PubMed  Google Scholar 

Heimer, G., Rivlin, M., Israel, Z., Bergman, H. (2006). Synchronizing activity of basal ganglia and pathophysiology of parkinson’s disease. Parkinson’s Disease and Related Disorders, pp 17–20

Higgs, M. H., & Wilson, C. J. (2016). Unitary synaptic connections among substantia nigra pars reticulata neurons. Journal of Neurophysiology, 115(6), 2814–2829.

Article  PubMed  PubMed Central  Google Scholar 

Holt, G. R., Softky, W. R., Koch, C., & Douglas, R. J. (1996). Comparison of discharge variability in vitro and in vivo in cat visual cortex neurons. Journal of Neurophysiology, 75(5), 1806–1814.

Article  CAS  PubMed  Google Scholar 

Hurtado, J. M., Gray, C. M., Tamas, L. B., & Sigvardt, K. A. (1999). Dynamics of tremor-related oscillations in the human globus pallidus: a single case study. Proceedings of the National Academy of Sciences, 96(4), 1674–1679.

Article  CAS  Google Scholar 

Hurtado, J. M., Rubchinsky, L. L., Sigvardt, K. A., Wheelock, V. L., & Pappas, C. T. (2005). Temporal evolution of oscillations and synchrony in gpi/muscle pairs in parkinson’s disease. Journal of Neurophysiology, 93(3), 1569–1584.

Article  PubMed  Google Scholar 

Jenkinson, N., & Brown, P. (2011). New insights into the relationship between dopamine, beta oscillations and motor function. Trends in Neurosciences, 34(12), 611–618.

Article  CAS  PubMed  Google Scholar 

Kita, H., & Kitai, S. (1987). Efferent projections of the subthalamic nucleus in the rat: light and electron microscopic analysis with the pha-l method. Journal of Comparative Neurology, 260(3), 435–452.

Article  CAS  PubMed  Google Scholar 

Levy, R., Ashby, P., Hutchison, W. D., Lang, A. E., Lozano, A. M., & Dostrovsky, J. O. (2002). Dependence of subthalamic nucleus oscillations on movement and dopamine in parkinson’s disease. Brain, 125(6), 1196–1209.

Article  PubMed  Google Scholar 

Lo, Y. J., & Poo, M. M. (1991). Activity-dependent synaptic competition in vitro: heterosynaptic suppression of developing synapses. Science, 254(5034), 1019–1022.

Article  CAS  PubMed  Google Scholar 

Mallet, N., Pogosyan, A., Márton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. Journal of Neuroscience, 28(52), 14245–14258.

Article  CAS  PubMed  Google Scholar 

Mallet, N., Micklem, B. R., Henny, P., Brown, M. T., Williams, C., Bolam, J. P., Nakamura, K. C., & Magill, P. J. (2012). Dichotomous organization of the external globus pallidus. Neuron, 74(6), 1075–1086.

Article  CAS  PubMed  PubMed Central  Google Scholar 

McCairn, K. W., & Turner, R. S. (2009). Deep brain stimulation of the globus pallidus internus in the parkinsonian primate: local entrainment and suppression of low-frequency oscillations. Journal of Neurophysiology, 101(4), 1941–1960.

Article  PubMed  PubMed Central  Google Scholar 

Nakano, K. (2000). Neural circuits and topographic organization of the basal ganglia and related regions. Brain and Development, 22, 5–16.

Article  Google Scholar 

Parr-Brownlie, L. C., Poloskey, S. L., Bergstrom, D. A., & Walters, J. R. (2009). Parafascicular thalamic nucleus activity in a rat model of parkinson’s disease. Experimental Neurology, 217(2), 269–281.

Article  PubMed  PubMed Central  Google Scholar 

Phillips, R. S., Rosner, I., Gittis, A. H., & Rubin, J. E. (2020). The effects of chloride dynamics on substantia nigra pars reticulata responses to pallidal and striatal inputs. Elife, 9, e55592.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Raz, A., Vaadia, E., & Bergman, H. (2000). Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1, 2, 3, 6-tetrahydropyridine vervet model of parkinsonism. Journal of Neuroscience, 20(22), 8559–8571.

Article  CAS  PubMed  Google Scholar 

Rubin, J. E. (2017). Computational models of basal ganglia dysfunction: the dynamics is in the details. Current Opinion in Neurobiology, 46, 127–135.

Article  CAS  PubMed  Google Scholar 

Simmons, D. V., Higgs, M. H., Lebby, S., & Wilson, C. J. (2020). Indirect pathway control of firing rate and pattern in the substantia nigra pars reticulata. Journal of Neurophysiology, 123(2), 800–814.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Smith, Y., & Bolam, J. P. (1989). Neurons of the substantia nigra reticulata receive a dense gaba-containing input from the globus pallidus in the rat. Brain Research, 493(1), 160–167.

Article  CAS  PubMed  Google Scholar 

Steigerwald, F., Potter, M., Herzog, J., Pinsker, M., Kopper, F., Mehdorn, H., Deuschl, G., & Volkmann, J. (2008). Neuronal activity of the human subthalamic nucleus in the parkinsonian and nonparkinsonian state. Journal of Neurophysiology, 100(5), 2515–2524.

Article  CAS  PubMed  Google Scholar 

Steriade, M., McCormick, D. A., & Sejnowski, T. J. (1993). Thalamocortical oscillations in the sleeping and aroused brain. Science, 262(5134), 679–685.

Article  CAS  PubMed  Google Scholar 

Terman, D., Rubin, J. E., Yew, A., & Wilson, C. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. Journal of Neuroscience, 22(7), 2963–2976.

Article  CAS  PubMed  Google Scholar 

Thoenen, H. (2000). Neurotrophins and activity-dependent plasticity. Progress in Brain Research, 128, 183–191.

Article  CAS  PubMed  Google Scholar 

Tseng, K. Y., Kasanetz, F., Kargieman, L., Riquelme, L. A., & Murer, M. G. (2001). Cortical slow oscillatory activity is reflected in the membrane potential and spi

留言 (0)

沒有登入
gif