Fabricating the cartilage: recent achievements

Agheb M, Dinari M, Rafienia M, Salehi H (2017) Novel electrospun nanofibers of modified gelatin-tyrosine in cartilage tissue engineering. Mater Sci Eng C 71:240–251. https://doi.org/10.1016/j.msec.2016.10.003

Article  CAS  Google Scholar 

Agrawal P, Pramanik K (2019) Enhanced chondrogenic differentiation of human mesenchymal stem cells in silk fibroin/chitosan/glycosaminoglycan scaffolds under dynamic culture condition. Differentiation 110:36–48. https://doi.org/10.1016/j.diff.2019.09.004

Article  CAS  PubMed  Google Scholar 

Agrawal P, Pramanik K, Biswas A (2018) Chondrogenic differentiation of mesenchymal stem cells on silk fibroin:chitosan-glucosamine scaffold in dynamic culture. Regen Med 13:545–558. https://doi.org/10.2217/rme-2017-0159

Article  CAS  PubMed  Google Scholar 

Ahn CB, Kim Y, Park SJ, Hwang Y, Lee JW (2018) Development of arginine-glycine-aspartate-immobilized 3D printed poly(propylene fumarate) scaffolds for cartilage tissue engineering. J Biomater Sci Polym Ed 29:917–931. https://doi.org/10.1080/09205063.2017.1383020

Article  CAS  PubMed  Google Scholar 

Aisenbrey EA, Bryant SJ (2018) A MMP7-sensitive photoclickable biomimetic hydrogel for MSC encapsulation towards engineering human cartilage. J Biomed Mater Res—Part A 106:2344–2355. https://doi.org/10.1002/jbm.a.36412

Article  CAS  Google Scholar 

Aisenbrey EA, Bryant SJ (2019) The role of chondroitin sulfate in regulating hypertrophy during MSC chondrogenesis in a cartilage mimetic hydrogel under dynamic loading. Biomaterials 190–191:51–62. https://doi.org/10.1016/j.biomaterials.2018.10.028

Article  CAS  PubMed  Google Scholar 

Akkiraju H, Nohe A (2015) Role of chondrocytes in cartilage formation, progression of osteoarthritis and cartilage regeneration. J Dev Biol 3:177–192. https://doi.org/10.3390/jdb3040177

Article  CAS  PubMed  Google Scholar 

Albrecht C, Tichy B, Nurnberger S, Hosiner S, Zak L, Aldrian S et al (2011) Gene expression and cell differentiation in matrix-associated chondrocyte transplantation grafts: a comparative study. Osteoarthr Cartil 19:1219–1227. https://doi.org/10.1016/j.joca.2011.07.004

Article  CAS  Google Scholar 

Albrecht C, Tichy B, Nurnberger S, Zak L, Handl MJ, Marlovits S et al (2013) Influence of cryopreservation, cultivation time and patient’s age on gene expression in Hyalograft(R) C cartilage transplants. Int Orthop 37:2297–2303. https://doi.org/10.1007/s00264-013-2009-z

Article  PubMed  PubMed Central  Google Scholar 

Albro MB, Cigan AD, Nims RJ, Yeroushalmi KJ, Oungoulian SR, Hung CT et al (2012) Shearing of synovial fluid activates latent TGF-β. Osteoarthr Cartil 20:1374–1382. https://doi.org/10.1016/j.joca.2012.07.006

Article  CAS  Google Scholar 

Alford JW, Cole BJ (2005) Cartilage restoration, part 1: basic science, historical perspective, patient evaluation, and treatment options. Am J Sport Med 33:295–306. https://doi.org/10.1177/0363546504273510

Article  Google Scholar 

Almqvist KF, Wang L, Wang J, Baeten D, Cornelissen M, Verdonk R et al (2001) Culture of chondrocytes in alginate surrounded by fibrin gel: characteristics of the cells over a period of eight weeks. Ann Rheum Dis 60:781–790. https://doi.org/10.1136/ard.60.8.781

Article  CAS  PubMed  PubMed Central  Google Scholar 

An YH, Martin KL (2003) Handbook of histology methods for bone and cartilage. Humana Press, Totowa, NJ

Book  Google Scholar 

Antich C, de Vicente J, Jiménez G, Chocarro C, Carrillo E, Montañez E et al (2020) Bio-inspired hydrogel composed of hyaluronic acid and alginate as a potential bioink for 3D bioprinting of articular cartilage engineering constructs. Acta Biomater 106:114–123. https://doi.org/10.1016/j.actbio.2020.01.046

Article  CAS  PubMed  Google Scholar 

Antich C, Jiménez G, de Vicente J, López-Ruiz E, Chocarro-Wrona C, Griñán-Lisón C et al (2021) Development of a biomimetic hydrogel based on predifferentiated mesenchymal stem-cell-derived ECM for cartilage tissue engineering. Adv Healthc Mater 10:1–17. https://doi.org/10.1002/adhm.202001847

Article  CAS  Google Scholar 

Antons J, Marascio MGM, Nohava J, Martin R, Applegate LA, Bourban PE et al (2018) Zone-dependent mechanical properties of human articular cartilage obtained by indentation measurements. J Mater Sci Mater Med. https://doi.org/10.1007/s10856-018-6066-0

Article  PubMed  Google Scholar 

Antunes BP, Vainieri ML, Alini M, Monsonego-Ornan E, Grad S, Yayon A (2020) Enhanced chondrogenic phenotype of primary bovine articular chondrocytes in Fibrin-Hyaluronan hydrogel by multi-axial mechanical loading and FGF18. Acta Biomater 105:170–179. https://doi.org/10.1016/j.actbio.2020.01.032

Article  CAS  PubMed  Google Scholar 

Armoiry X, Cummins E, Connock M, Metcalfe A, Royle P, Johnston R et al (2019) Autologous chondrocyte implantation with chondrosphere for treating articular cartilage defects in the knee: an evidence review group perspective of a NICE single technology appraisal. Pharmacoeconomics 37:879–886. https://doi.org/10.1007/s40273-018-0737-z

Article  PubMed  Google Scholar 

Ayan B, Heo DN, Zhang Z, Dey M, Povilianskas A, Drapaca C et al (2020) Aspiration-assisted bioprinting for precise positioning of biologics. Sci Adv 6:eaaw5111. https://doi.org/10.1126/sciadv.aaw5111

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ayan B, Wu Y, Karuppagounder V, Kamal F, Ozbolat IT (2020) Aspiration-assisted bioprinting of the osteochondral interface. Sci Rep. https://doi.org/10.1038/s41598-020-69960-6

Article  PubMed  PubMed Central  Google Scholar 

Bahrami M, Valiani A, Amirpour N, Ra Rani MZ, Hashemibeni B (2018) Cartilage tissue engineering via icariin and adipose-derived stem cells in fibrin scaffold. Adv Biomed Res 7:36. https://doi.org/10.4103/2277-9175.225925

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bancroft GN, Sikavitsas VI, Mikos AG (2003) Design of a flow perfusion bioreactor system for bone tissue-engineering applications. Tissue Eng 9:549–554. https://doi.org/10.1089/107632703322066723

Article  CAS  PubMed  Google Scholar 

Benders KE, van Weeren PR, Badylak SF, Saris DB, Dhert WJ, Malda J (2013) Extracellular matrix scaffolds for cartilage and bone regeneration. Trends Biotechnol 31:169–176. https://doi.org/10.1016/j.tibtech.2012.12.004

Article  CAS  PubMed  Google Scholar 

Bernal PN, Delrot P, Loterie D, Li Y, Malda J, Moser C et al (2019) Volumetric bioprinting of complex living-tissue constructs within seconds. Adv Mater 31:1904209. https://doi.org/10.1002/adma.201904209

Article  CAS  Google Scholar 

Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA (2011a) Enhanced MSC chondrogenesis following delivery of TGF-beta3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32:6425–6434. https://doi.org/10.1016/j.biomaterials.2011.05.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bian L, Zhai DY, Tous E, Rai R, Mauck RL, Burdick JA (2011b) Enhanced MSC chondrogenesis following delivery of TGF-β3 from alginate microspheres within hyaluronic acid hydrogels in vitro and in vivo. Biomaterials 32:6425–6434. https://doi.org/10.1016/j.biomaterials.2011.05.033

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bolívar-Monsalve EJ, Ceballos-González CF, Borrayo-Montaño KI, Quevedo-Moreno DA, Yee-de León JF, Khademhosseini A et al (2021) Continuous chaotic bioprinting of skeletal muscle-like constructs. Bioprinting 21:e00125. https://doi.org/10.1016/j.bprint.2020.e00125

Article  Google Scholar 

Capito RM, Spector M (2007) Collagen scaffolds for nonviral IGF-1 gene delivery in articular cartilage tissue engineering. Gene Ther 14:721–732. https://doi.org/10.1038/sj.gt.3302918

Article  CAS  PubMed  Google Scholar 

Cavalli E, Levinson C, Hertl M, Broguiere N, Brück O, Mustjoki S et al (2019) Characterization of polydactyly chondrocytes and their use in cartilage engineering. Sci Rep. https://doi.org/10.1038/s41598-019-40575-w

Article  PubMed  PubMed Central  Google Scholar 

Chavez RD, Serra R (2020) Scaffoldless tissue-engineered cartilage for studying transforming growth factor beta-mediated cartilage formation. Biotechnol Prog 36:1–10. https://doi.org/10.1002/btpr.2897

Article  CAS  Google Scholar 

Chávez-Madero C, De León-Derby MD, Samandari M, Ceballos-González CF, Bolívar-Monsalve EJ, Mendoza-Buenrostro C et al (2020) Using chaotic advection for facile high-throughput fabrication of ordered multilayer micro-and nanostructures: continuous chaotic printing. Biofabrication 12:35023. https://doi.org/10.1088/1758-5090/ab84cc

Article  CAS  Google Scholar 

Chen F, Ni Y, Liu B, Zhou T, Yu C, Su Y et al (2017) Self-crosslinking and injectable hyaluronic acid/RGD-functionalized pectin hydrogel for cartilage tissue engineering. Carbohydr Polym 166:31–44. https://doi.org/10.1016/j.carbpol.2017.02.059

Article  CAS  PubMed  Google Scholar 

Chen H, Qin Z, Zhao J, He Y, Ren E, Zhu Y et al (2019) Cartilage-targeting and dual MMP-13/pH responsive theranostic nanoprobes for osteoarthritis imaging and precision therapy. Biomaterials. https://doi.org/10.1016/j.biomaterials.2019.119520

Article  PubMed  PubMed Central  Google Scholar 

Chen L, Liu J, Guan M, Zhou T, Duan X, Xiang Z (2020a) Growth factor and its polymer scaffold-based delivery system for cartilage tissue engineering. Int J Nanomedicine 15:6097–6111. https://doi.org/10.2147/IJN.S249829

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen W, Li Z, Wang Z, Gao H, Ding J, He Z (2020b) Intraarticular injection of infliximab-loaded thermosensitive hydrogel alleviates pain and protects cartilage in rheumatoid arthritis. J Pain Res 13:3315–3329. https://doi.org/10.2147/JPR.S283518

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen M, Li YY, Liu S, Feng Z, Wang H, Yang D et al (2021) Hierarchical macro-microporous WPU-ECM scaffolds combined with microfracture promote in situ articular cartilage regeneration in rabbits. Bioact Mater 6:1932–1944.

留言 (0)

沒有登入
gif