Fixation-induced surgical segment’s high stiffness and the damage of posterior structures together trigger a higher risk of adjacent segment disease in patients with lumbar interbody fusion operations

Xi Z, Mummaneni PV, Wang M, Ruan H, Burch S, Deviren V, Clark AJ, Berven SH, Chou D. The association between lower Hounsfield units on computed tomography and cage subsidence after lateral lumbar interbody fusion. Neurosurg Focus. 2020;49:E8.

Article  PubMed  Google Scholar 

Pisano AJ, Fredericks DR, Steelman T, Riccio C, Helgeson MD, Wagner SC. Lumbar disc height and vertebral Hounsfield units: association with interbody cage subsidence. Neurosurg Focus. 2020;49:E9.

Article  PubMed  Google Scholar 

Hu Z, He D, Gao J, Zeng Z, Jiang C, Ni W, Yik JHN, Zhao X, Fan S. The influence of endplate morphology on cage subsidence in patients with stand-alone oblique lateral lumbar interbody fusion (OLIF). Global Spine J. 2021. https://doi.org/10.1177/2192568221992098.

Article  PubMed  PubMed Central  Google Scholar 

Fan W, Guo LX, Zhang M. Biomechanical analysis of lumbar interbody fusion supplemented with various posterior stabilization systems. Eur Spine J. 2021;30:2342–50.

Article  PubMed  Google Scholar 

Bagheri SR, Alimohammadi E, Zamani Froushani A, Abdi A. Adjacent segment disease after posterior lumbar instrumentation surgery for degenerative disease: incidence and risk factors. J Orthop Surg (Hong Kong). 2019;27:2309499019842378.

Article  PubMed  Google Scholar 

Hashimoto K, Aizawa T, Kanno H, Itoi E. Adjacent segment degeneration after fusion spinal surgery-a systematic review. Int Orthop. 2019;43:987–93.

Article  PubMed  Google Scholar 

Akamaru T, Kawahara N, Tim Yoon S, Minamide A, Su Kim K, Tomita K, Hutton WC. Adjacent segment motion after a simulated lumbar fusion in different sagittal alignments: a biomechanical analysis. Spine (Phila Pa 1976). 2003;28:1560–6.

Article  PubMed  Google Scholar 

Zhang C, Shi J, Chang M, Yuan X, Zhang R, Huang H, Tang S: does osteoporosis affect the adjacent segments following anterior lumbar interbody fusion? A finite element study. World Neurosurg 2020.

Tsuang FY, Tsai JC, Lai DM. Effect of lordosis on adjacent levels after lumbar interbody fusion, before and after removal of the spinal fixator: a finite element analysis. BMC Musculoskelet Disord. 2019;20:470.

Article  PubMed  PubMed Central  Google Scholar 

Zhao Y, Xu B, Qi L, Li C, Yue L, Yu Z, Wang S, Sun H. Hybrid surgery with PEEK rods for lumbar degenerative diseases: a 2-year follow-up study. BMC Musculoskelet Disord. 2022;23:4.

Article  PubMed  PubMed Central  Google Scholar 

Athanasakopoulos M, Mavrogenis AF, Triantafyllopoulos G, Koufos S, Pneumaticos SG. Posterior spinal fusion using pedicle screws. Orthopedics. 2013;36:e951-957.

Article  PubMed  Google Scholar 

Lee JC, Kim Y, Soh JW, Shin BJ. Risk factors of adjacent segment disease requiring surgery after lumbar spinal fusion: comparison of posterior lumbar interbody fusion and posterolateral fusion. Spine (Phila Pa 1976). 2014;39:E339-345.

Article  PubMed  Google Scholar 

Qasim M, Natarajan RN, An HS, Andersson GB. Damage accumulation location under cyclic loading in the lumbar disc shifts from inner annulus lamellae to peripheral annulus with increasing disc degeneration. J Biomech. 2014;47:24–31.

Article  PubMed  Google Scholar 

Xu WQ, Zhang XY, Wang N, Jiang L, Xi ZP, Deng RR, Wang GQ, Xie L. Biomechanical affect of percutaneous transforaminal endoscopic discectomy on adjacent segments with different degrees of degeneration:a finite element analysis. Zhongguo Gu Shang. 2021;34:40–4.

PubMed  Google Scholar 

Ruberté LM, Natarajan RN, Andersson GB. Influence of single-level lumbar degenerative disc disease on the behavior of the adjacent segments–a finite element model study. J Biomech. 2009;42:341–8.

Article  PubMed  Google Scholar 

Park P, Garton HJ, Gala VC, Hoff JT, McGillicuddy JE. Adjacent segment disease after lumbar or lumbosacral fusion: review of the literature. Spine (Phila Pa 1976). 2004;29:1938–44.

Article  PubMed  Google Scholar 

Cardoso MJ, Dmitriev AE, Helgeson M, Lehman RA, Kuklo TR, Rosner MK. Does superior-segment facet violation or laminectomy destabilize the adjacent level in lumbar transpedicular fixation? An in vitro human cadaveric assessment. Spine (Phila Pa 1976). 2008;33:2868–73.

Article  PubMed  Google Scholar 

Mavrogenis AF, Vottis C, Triantafyllopoulos G, Papagelopoulos PJ, Pneumaticos SG. PEEK rod systems for the spine. Eur J Orthop Surg Traumatol. 2014;24(Suppl 1):S111-116.

Article  PubMed  Google Scholar 

Tzermiadianos MN, Mekhail A, Voronov LI, Zook J, Havey RM, Renner SM, Carandang G, Abjornson C, Patwardhan AG. Enhancing the stability of anterior lumbar interbody fusion: a biomechanical comparison of anterior plate versus posterior transpedicular instrumentation. Spine (Phila Pa 1976). 2008;33:E38-43.

Article  PubMed  Google Scholar 

Bermel EA, Barocas VH, Ellingson AM. The role of the facet capsular ligament in providing spinal stability. Comput Methods Biomech Biomed Engin. 2018;21:712–21.

Article  PubMed  PubMed Central  Google Scholar 

Okuda S, Oda T, Miyauchi A, Haku T, Yamamoto T, Iwasaki M. Surgical outcomes of posterior lumbar interbody fusion in elderly patients. J Bone Joint Surg Am. 2006;88:2714–20.

Article  PubMed  Google Scholar 

Fan W, Guo LX, Zhao D. Stress analysis of the implants in transforaminal lumbar interbody fusion under static and vibration loadings: a comparison between pedicle screw fixation system with rigid and flexible rods. J Mater Sci Mater Med. 2019;30:118.

Article  PubMed  Google Scholar 

Li JC, Yang ZQ, Xie TH, Song ZT, Song YM, Zeng JC. Deterioration of the fixation segment’s stress distribution and the strength reduction of screw holding position together cause screw loosening in ALSR fixed OLIF patients with poor BMD. Front Bioeng Biotechnol. 2022;10: 922848.

Article  PubMed  PubMed Central  Google Scholar 

Li JC, Xie TH, Zhang Z, Song ZT, Song YM, Zeng JC. The mismatch between bony endplates and grafted bone increases screw loosening risk for OLIF patients With ALSR fixation biomechanically. Front Bioeng Biotechnol. 2022;10: 862951.

Article  PubMed  PubMed Central  Google Scholar 

Li J, Xu C, Zhang X, Xi Z, Sun S, Zhang K, Fang X, Xie L, Liu Y, Song Y. Disc measurement and nucleus calibration in a smoothened lumbar model increases the accuracy and efficiency of in-silico study. J Orthop Surg Res. 2021;16:498.

Article  PubMed  PubMed Central  Google Scholar 

Li J, Xie Y, Sun S, Xue C, Xu W, Xu C, Xi Z. Regional differences in bone mineral density biomechanically induce a higher risk of adjacent vertebral fracture after percutaneous vertebroplasty: a case-comparative study. Int J Surg. 2023. https://doi.org/10.1097/JS9.0000000000000273.

Article  PubMed  Google Scholar 

Xu C, Xi Z, Fang Z, Zhang X, Wang N, Li J, Liu Y. Annulus calibration increases the computational accuracy of the lumbar finite element model. Global Spine J. 2022;16:21925682221081224.

Google Scholar 

Zhao FD, Pollintine P, Hole BD, Adams MA, Dolan P. Vertebral fractures usually affect the cranial endplate because it is thinner and supported by less-dense trabecular bone. Bone. 2009;44:372–9.

Article  PubMed  Google Scholar 

Pan CL, Zhang BY, Zhu YH, Ma YH, Li MF, Wang X, Yang F, Li YQ, Zhu YH. Morphologic analysis of Chinese lumbar endplate by three-dimensional computed tomography reconstructions for helping design lumbar disc prosthesis. Medicine (Baltimore). 2021;100: e24583.

Article  CAS  PubMed  Google Scholar 

Liu JT, Han H, Gao ZC, He CY, Cai X, Niu BB, Gu MC, Li YH, Liang H, He XJ. CT assisted morphological study of lumbar endplate. Zhongguo Gu Shang. 2018;31:1129–35.

PubMed  Google Scholar 

Renner SM, Natarajan RN, Patwardhan AG, Havey RM, Voronov LI, Guo BY, Andersson GB, An HS. Novel model to analyze the effect of a large compressive follower pre-load on range of motions in a lumbar spine. J Biomech. 2007;40:1326–32.

Article  PubMed  Google Scholar 

Wilson DC, Niosi CA, Zhu QA, Oxland TR, Wilson DR. Accuracy and repeatability of a new method for measuring facet loads in the lumbar spine. J Biomech. 2006;39:348–53.

Article  PubMed  Google Scholar 

Schilling C, Krüger S, Grupp TM, Duda GN, Blömer W, Rohlmann A. The effect of design parameters of dynamic pedicle screw systems on kinematics and load bearing: an in vitro study. Eur Spine J. 2011;20:297–307.

Article  CAS  PubMed  Google Scholar 

Hsieh YY, Chen CH, Tsuang FY, Wu LC, Lin SC, Chiang CJ. Removal of fixation construct could mitigate adjacent segment stress after lumbosacral fusion: a finite element analysis. Clin Biomech (Bristol, Avon). 2017;43:115–20.

Article  PubMed  Google Scholar 

Xu C, Huang C, Cai P, Fang Z, Wei Z, Liu F, Li J, Liu Y. Biomechanical effects of pedicle screw positioning on the surgical segment in models after oblique lumbar interbody fusion: an in-silico study. Int J Gen Med. 2022;15:1047–56.

Article  PubMed  PubMed Central  Google Scholar 

Lu T, Lu Y. Comparison of biomechanical performance among posterolateral fusion and transforaminal, extreme, and oblique lumbar interbody fusion: a finite element analysis. World Neurosurg. 2019;129:e890–9.

Article  PubMed  Google Scholar 

Zhou C, Cha T, Wang W, Guo R, Li G. Investigation of alterations in the lumbar disc biomechanics at the adjacent segments after spinal fusion using a combined in vivo and in silico approach. Ann Biomed Eng. 2021;49:601–16.

Article  PubMed  Google Scholar 

Zhou C, Cha T, Li G. An upper bound computational model for investigation of fusion effects on adjacent segment biomechanics of the lumbar spine. Comput Methods Biomech Biomed Engin. 2019;22:1126–34.

Article  PubMed  Google Scholar 

Li J, Xu C, Zhang X, Xi Z, Liu M, Fang Z, Wang N, Xie L, Song Y. TELD with limited foraminoplasty has potential biomechanical advantages over TELD with large annuloplasty: an in-silico study. BMC Musculoskelet Disord. 2021;22:616.

Article  CAS  PubMed 

留言 (0)

沒有登入
gif