Determination of D-serine and D-alanine Tissue Levels in the Prefrontal Cortex and Hippocampus of Rats After a Single Dose of Sodium Benzoate, a D-Amino Acid Oxidase Inhibitor, with Potential Antipsychotic and Antidepressant Properties

Hashimoto K, Yoshida T, Ishikawa M, Fujita Y, Niitsu T, Nakazato M, Watanabe H, Sasaki T, Shiina A, Hashimoto T, Kanahara N, Hasegawa T, Enohara M, Kimura A, Iyo M (2016) Increased serum levels of serine enantiomers in patients with depression. Acta neuropsychiatrica 28(3):173–178. https://doi.org/10.1017/neu.2015.59

Article  PubMed  Google Scholar 

Murrough JW, Abdallah CG, Mathew SJ (2017) Targeting glutamate signalling in depression: progress and prospects. Nat reviews Drug discovery press. https://doi.org/10.1038/nrd.2017.16

Article  Google Scholar 

Deutschenbaur L, Beck J, Kiyhankhadiv A, Muhlhauser M, Borgwardt S, Walter M, Hasler G, Sollberger D, Lang UE (2016) Role of calcium, glutamate and NMDA in major depression and therapeutic application. Prog Neuro-psychopharmacol Biol Psychiatry 64:325–333. https://doi.org/10.1016/j.pnpbp.2015.02.015

Article  CAS  Google Scholar 

Sawa A, Snyder SH (2003) Schizophrenia: neural mechanisms for novel therapies. Mol Med (Cambridge Mass) 9(1–2):3–9

Article  Google Scholar 

Errico F, Napolitano F, Squillace M, Vitucci D, Blasi G, de Bartolomeis A, Bertolino A, D’Aniello A, Usiello A (2013) Decreased levels of D-aspartate and NMDA in the prefrontal cortex and striatum of patients with schizophrenia. J Psychiatr Res 47(10):1432–1437. https://doi.org/10.1016/j.jpsychires.2013.06.013

Article  PubMed  Google Scholar 

Javitt DC (2012) Twenty-five years of glutamate in schizophrenia: are we there yet? Schizophr Bull 38(5):911–913. https://doi.org/10.1093/schbul/sbs100

Article  PubMed  PubMed Central  Google Scholar 

Javitt DC (1987) Negative schizophrenic symptomatology and the PCP (phencyclidine) model of schizophrenia. Hillside J Clin psychiatry 9(1):12–35

CAS  PubMed  Google Scholar 

Javitt DC, Zukin SR (1991) Recent advances in the phencyclidine model of schizophrenia. Am J Psychiatry 148(10):1301–1308. https://doi.org/10.1176/ajp.148.10.1301

Article  CAS  PubMed  Google Scholar 

Krystal JH, Karper LP, Seibyl JP, Freeman GK, Delaney R, Bremner JD, Heninger GR, Bowers MB Jr, Charney DS (1994) Subanesthetic effects of the noncompetitive NMDA antagonist, ketamine, in humans. Psychotomimetic, perceptual, cognitive, and neuroendocrine responses. Arch Gen Psychiatry 51(3):199–214

Article  CAS  PubMed  Google Scholar 

Lahti AC, Holcomb HH, Medoff DR, Tamminga CA (1995) Ketamine activates psychosis and alters limbic blood flow in schizophrenia. NeuroReport 6(6):869–872

Article  CAS  PubMed  Google Scholar 

Heresco-Levy U, Ermilov M, Lichtenberg P, Bar G, Javitt DC (2004) High-dose glycine added to olanzapine and risperidone for the treatment of schizophrenia. Biol Psychiatry 55(2):165–171

Article  CAS  PubMed  Google Scholar 

Lane HY, Chang YC, Liu YC, Chiu CC, Tsai GE (2005) Sarcosine or D-serine add-on treatment for acute exacerbation of schizophrenia: a randomized, double-blind, placebo-controlled study. Arch Gen Psychiatry 62(11):1196–1204. https://doi.org/10.1001/archpsyc.62.11.1196

Article  CAS  PubMed  Google Scholar 

Lane HY, Huang CL, Wu PL, Liu YC, Chang YC, Lin PY, Chen PW, Tsai G (2006) Glycine transporter I inhibitor, N-methylglycine (sarcosine), added to clozapine for the treatment of schizophrenia. Biol Psychiatry 60(6):645–649. https://doi.org/10.1016/j.biopsych.2006.04.005

Article  CAS  PubMed  Google Scholar 

Lane HY, Liu YC, Huang CL, Chang YC, Liau CH, Perng CH, Tsai GE (2008) Sarcosine (N-methylglycine) treatment for acute schizophrenia: a randomized, double-blind study. Biol Psychiatry 63(1):9–12. https://doi.org/10.1016/j.biopsych.2007.04.038

Article  CAS  PubMed  Google Scholar 

Tsai GE, Yang P, Chang YC, Chong MY (2006) D-alanine added to antipsychotics for the treatment of schizophrenia. Biol Psychiatry 59(3):230–234. https://doi.org/10.1016/j.biopsych.2005.06.032

Article  CAS  PubMed  Google Scholar 

Huang CC, Wei IH, Huang CL, Chen KT, Tsai MH, Tsai P, Tun R, Huang KH, Chang YC, Lane HY, Tsai GE (2013) Inhibition of glycine transporter-I as a novel mechanism for the treatment of depression. Biol Psychiatry 74(10):734–741. https://doi.org/10.1016/j.biopsych.2013.02.020

Article  CAS  PubMed  Google Scholar 

Chen KT, Tsai MH, Wu CH, Jou MJ, Wei IH, Huang CC (2015) AMPA Receptor-mTOR activation is required for the antidepressant-like Effects of Sarcosine during the forced swim test in rats: insertion of AMPA receptor may play a role. Front Behav Neurosci 9:162. https://doi.org/10.3389/fnbeh.2015.00162

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei IH, Chen KT, Tsai MH, Wu CH, Lane HY, Huang CC (2017) Acute amino acid d-Serine administration, similar to ketamine, produces antidepressant-like Effects through identical mechanisms. J Agric Food Chem 65(49):10792–10803. https://doi.org/10.1021/acs.jafc.7b04217

Article  CAS  PubMed  Google Scholar 

Lai C-H, Lane H-Y, Tsai GE (2012) Clinical and cerebral volumetric effects of sodium benzoate, a D-amino acid oxidase inhibitor, in a drug-naive patient with major depression. Biol Psychiatry 71(4):e9–e10

Article  PubMed  Google Scholar 

Strzelecki D, Kropiwnicki P, Rabe-Jabłońska J (2013) [Augmentation of antipsychotics with glycine may ameliorate depressive and extrapyramidal symptoms in schizophrenic patients–a preliminary 10-week open-label study]. Psychiatr Pol 47(4):609–620

PubMed  Google Scholar 

Kantrowitz JT, Malhotra AK, Cornblatt B, Silipo G, Balla A, Suckow RF, D’Souza C, Saksa J, Woods SW, Javitt DC (2010) High dose D-serine in the treatment of schizophrenia. Schizophr Res 121(1–3):125–130. https://doi.org/10.1016/j.schres.2010.05.012

Article  PubMed  PubMed Central  Google Scholar 

Ganote CE, Peterson DR, Carone FA (1974) The nature of D-serine–induced nephrotoxicity. Am J Pathol 77(2):269–282

CAS  PubMed  PubMed Central  Google Scholar 

Williams RE, Lock EA (2005) Sodium benzoate attenuates D-serine induced nephrotoxicity in the rat. Toxicology 207(1):35–48. https://doi.org/10.1016/j.tox.2004.08.008

Article  CAS  PubMed  Google Scholar 

Jentzmik F, Stephan C, Lein M, Miller K, Kamlage B, Bethan B, Kristiansen G, Jung K (2011) Sarcosine in prostate cancer tissue is not a differential metabolite for prostate cancer aggressiveness and biochemical progression. J Urol 185(2):706–711. https://doi.org/10.1016/j.juro.2010.09.077

Article  CAS  PubMed  Google Scholar 

Walczak-Nowicka ŁJ, Herbet M (2022) Sodium Benzoate-Harmfulness and potential use in therapies for Disorders related to the nervous system: a review. Nutrients 14(7). https://doi.org/10.3390/nu14071497

MacKay MB, Kravtsenyuk M, Thomas R, Mitchell ND, Dursun SM, Baker GB (2019) D-Serine: potential therapeutic Agent and/or biomarker in Schizophrenia and Depression? Front Psychiatry 10:25. https://doi.org/10.3389/fpsyt.2019.00025

Article  PubMed  PubMed Central  Google Scholar 

Pei JC, Luo DZ, Gau SS, Chang CY, Lai WS (2021) Directly and indirectly targeting the Glycine Modulatory Site to modulate NMDA receptor function to address Unmet Medical needs of patients with Schizophrenia. Front Psychiatry 12:742058. https://doi.org/10.3389/fpsyt.2021.742058

Article  PubMed  PubMed Central  Google Scholar 

Szilágyi B, Ferenczy GG, Keserű GM (2018) Drug discovery strategies and the preclinical development of D-amino-acid oxidase inhibitors as antipsychotic therapies. Expert Opin Drug Discov 13(10):973–982. https://doi.org/10.1080/17460441.2018.1524459

Article  CAS  PubMed  Google Scholar 

Rojas C, Alt J, Ator NA, Thomas AG, Wu Y, Hin N, Wozniak K, Ferraris D, Rais R, Tsukamoto T, Slusher BS (2016) D-Amino-acid oxidase inhibition increases D-Serine plasma levels in mouse but not in Monkey or Dog. Neuropsychopharmacology: official publication of the American College of Neuropsychopharmacology 41(6):1610–1619. https://doi.org/10.1038/npp.2015.319

Article  CAS  PubMed  Google Scholar 

Matsuura A, Fujita Y, Iyo M, Hashimoto K (2015) Effects of sodium benzoate on pre-pulse inhibition deficits and hyperlocomotion in mice after administration of phencyclidine. Acta neuropsychiatrica 27(3):159–167. https://doi.org/10.1017/neu.2015.1

Article  PubMed  Google Scholar 

Sershen H, Hashim A, Dunlop DS, Suckow RF, Cooper TB, Javitt DC (2016) Modulating NMDA receptor function with D-Amino acid oxidase inhibitors: understanding functional activity in PCP-Treated mouse model. Neurochem Res 41(1–2):398–408. https://doi.org/10.1007/s11064-016-1838-8

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferraris D, Duvall B, Ko YS, Thomas AG, Rojas C, Majer P, Hashimoto K, Tsukamoto T (2008) Synthesis and biological evaluation of D-amino acid oxidase inhibitors. J Med Chem 51(12):3357–3359. https://doi.org/10.1021/jm800200u

Article  CAS  PubMed  Google Scholar 

Strick CA, Li C, Scott L, Harvey B, Hajós M, Steyn SJ, Piotrowski MA, James LC, Downs JT, Rago B, Becker SL, El-Kattan A, Xu Y, Ganong AH, Tingley FD 3rd, Ramirez AD, Seymour PA, Guanowsky V, Majchrzak MJ, Fox CB, Schmidt CJ, Duplantier AJ (2011) Modulation of NMDA receptor function by inhibition of D-amino acid oxidase in rodent brain. Neuropharmacology 61(5–6):1001–1015. https://doi.org/10.1016/j.neuropharm.2011.06.029

D’Aniello A, Vetere A, Petrucelli L (1993) Further study on the specificity of D-amino acid oxidase and D-aspartate oxidase and time course for complete oxidation of D-amino acids. Comp Biochem Physiol B Comp Biochem 105(3–4):731–734. https://doi.org/10.1016/0305-0491(93)90113-j

Article  Google Scholar 

Morikawa A, Hamase K, Inoue T, Konno R, Niwa A, Zaitsu K (2001) Determination of free D-aspartic acid, D-serine and D-alanine in the brain of mutant mice lacking D-amino acid oxidase activity. J Chromatogr B Biomedical Sci Appl 757(1):119–125. https://doi.org/10.1016/s0378-4347(01)00131-1

Article  CAS  Google Scholar 

Pollegioni L, Falbo A, Pilone MS (1992) Specificity and kinetics of Rhodotorula gracilis D-amino acid oxidase. Biochim Biophys Acta 1120(1):11–16. https://doi.org/10.1016/0167-4838(92)90418-d

Article  CAS  PubMed  Google Scholar 

Popiolek M, Tierney B, Steyn SJ, DeVivo M (2018) Lack of Effect of Sodium Benzoate at reported clinical therapeutic concentration on d-Alanine metabolism in Dogs. ACS Chem Neurosci 9(11):2832–2837. https://doi.org/10.1021/acschemneuro.8b00229

留言 (0)

沒有登入
gif