Intrauterine Device Complications and Their Management

Hubacher D, Kavanaugh M. Historical record-setting trends in IUD use in the United States. Contraception. 2018;98:467–70.

Article  PubMed  Google Scholar 

King LA, Michels KA, Graubard BI, Trabert B. Trends in oral contraceptive and intrauterine device use among reproductive-aged women in the US from 1999 to 2017. Cancer Causes Control. 2021;32:587–95.

Article  PubMed  PubMed Central  Google Scholar 

Bahamondes MV, Hidalgo MM, Bahamondes L, Monteiro I. Ease of insertion and clinical performance of the levonorgestrel-releasing intrauterine system in nulligravidas. Contraception. 2011. https://doi.org/10.1016/J.CONTRACEPTION.2011.05.012.

Article  PubMed  Google Scholar 

Teal SB, Romer SE, Goldthwaite LM, Peters MG, Kaplan DW, Sheeder J. Insertion characteristics of intrauterine devices in adolescents and young women: success, ancillary measures, and complications. Am J Obstet Gynecol. 2015;213:515.e1-515.e5.

Article  PubMed  Google Scholar 

Dermish AI, Turok DK, Jacobson JC, Flores MES, McFadden M, Burke K. Failed IUD insertions in community practice: an under-recognized problem? Contraception. 2013;87:182.

Article  PubMed  Google Scholar 

Bahamondes MV, Espejo-Arce X, Bahamondes L. Effect of vaginal administration of misoprostol before intrauterine contraceptive insertion following previous insertion failure: a double blind RCT. Hum Reprod. 2015;30:1861–6.

Article  CAS  PubMed  Google Scholar 

Zapata LB, Jatlaoui TC, Marchbanks PA, Curtis KM. Medications to ease intrauterine device insertion: a systematic review. Contraception. 2016;94:739.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Farmer M, Webb A. Intrauterine device insertion-related complications: can they be predicted? J Fam Plan Reprod Heal Care. 2003;29:227–31.

Article  Google Scholar 

Chi cheng I, Wilkens LR, Siemens AJ, Lippes J. Syncope and other vasovagal reactions at interval insertion of lippes loop D — who is most vulnerable? Contraception 1986;33:17–9187.

Tatum HJ, Schmidt FH, Phillips D, McCarty M, O’leary WM. The Dalkon Shield controversy: structural and bacteriological studies of IUD tails. JAMA 1975;231;711–717.

Farley TMM, Rowe PJ, Meirik O, Rosenberg MJ, Chen JH. Intrauterine devices and pelvic inflammatory disease: an international perspective. Lancet. 1992;339:785–8.

Article  CAS  PubMed  Google Scholar 

Sufrin CB, Postlethwaite D, Armstrong MA, Merchant M, Wendt JM, Steinauer JE. Neisseria gonorrhea and chlamydia trachomatis screening at intrauterine device insertion and pelvic inflammatory disease. Obstet Gynecol. 2012;120:1314–21.

Article  PubMed  Google Scholar 

Sinei SKA, Schulz KF, Lamptey PR, et al. Preventing IUCD-related pelvic infection: the efficacy of prophylactic doxycycline at insertion. BJOG An Int J Obstet Gynaecol. 1990;97:412–9.

Article  CAS  Google Scholar 

Grimes DA, Schulz KF. Prophylactic antibiotics for intrauterine device insertion: a metaanalysis of the randomized controlled trials. 1999.

Curtis KM, Jatlaoui TC, Tepper NK, Zapata LB, Horton LG, Jamieson DJ, Whiteman MK. U.S. selected practice recommendations for contraceptive use, 2016. MMWR Recomm reports Morb Mortal Wkly report Recomm reports. 2016;65:1–66.

Google Scholar 

Tepper NK, Steenland MW, Gaffield ME, Marchbanks PA, Curtis KM. Retention of intrauterine devices in women who acquire pelvic inflammatory disease: a systematic review. Contraception. 2013;87:655–60.

Article  PubMed  Google Scholar 

Bayard KE, Fabricant SP, White JD, Gordon B, Nguyen BT. Infectious outcomes following immediate postplacental intrauterine device placement in the setting of chorioamnionitis: an exploratory, retrospective study. Contraception 2022;109913.

Chi I, Feldblum PJ, Rogers SM. IUD–related uterine perforation: an epidemiologic analysis of a rare event using an international dataset. Adv Contracept Deliv Syst. 1984;5:123–30.

CAS  Google Scholar 

Caliskan E, Öztürk N, Dilbaz BÖ, Dilbaz S. Analysis of risk factors associated with uterine perforation by intrauterine devices. Eur J Contracept Reprod Heal Care. 2003;8:150–5.

Article  CAS  Google Scholar 

Gemzell-Danielsson K, Apter D, Dermout S, Faustmann T, Rosen K, Schmelter T, Merz M, Nelson A. Evaluation of a new, low-dose levonorgestrel intrauterine contraceptive system over 5 years of use 2016. https://doi.org/10.1016/j.ejogrb.2016.11.022

Teal SB, Turok DK, Chen BA, Kimble T, Olariu AI, Creinin MD. Five-year contraceptive efficacy and safety of a levonorgestrel 52-mg intrauterine system. Obstet Gynecol. 2019;133:63–70.

Article  CAS  PubMed  Google Scholar 

Heinemann K, Reed S, Moehner S, Do Minh T. Risk of uterine perforation with levonorgestrel-releasing and copper intrauterine devices in the European Active Surveillance Study on Intrauterine Devices. Contraception. 2015;91:274–9.

Article  CAS  PubMed  Google Scholar 

Barnett C, Moehner S, Do Minh T, Heinemann K. Perforation risk and intra-uterine devices: results of the EURAS-IUD 5-year extension study. Eur J Contracept Reprod Heal Care. 2017;22:424–8.

Article  Google Scholar 

Van Grootheest K, Sachs B, Harrison-Woolrych M, Caduff-Janosa P, Van Puijenbroek E. Uterine perforation with the levonorgestrel-releasing intrauterine device: analysis of reports from four national pharmacovigilance centres. Drug Saf. 2011;34:83–8.

Article  PubMed  Google Scholar 

•• Reed SD, Zhou X, Ichikawa L, et al. Intrauterine device-related uterine perforation incidence and risk (APEX-IUD): a large multisite cohort study. Lancet. 2022;399:2103–12.

Article  CAS  PubMed  Google Scholar 

•• Gatz JL, Armstrong MA, Postlethwaite D, et al. Association between intrauterine device type and risk of perforation and device expulsion: results from the Association of Perforation and Expulsion of Intrauterine Device study. Am J Obstet Gynecol. 2022;227:57.e1-57.e13. Large, multi-site retrospective cohort study examining rates of perforation and expulsion associated with levonorgestrel IUDs vs copper IUDs. The incidence rate of perforation for levonorgestrel IUDs was 1.64 per 1000 person-years, vs 1.27 per 1000 person-years for copper IUDs. The incidence rates of expulsion were 13.95 per 1000 person-years for levonorgestrel IUDs vs 14.08 per 1000 person-years for copper IUDs. In comparing levonorgestrel IUDs with copper IUDs, the adjusted hazard ratios were 1.49 (95% confidence intervals, 1.25-1.78) for perforation and 0.69 (95% confidence intervals, 0.65-0.73) for expulsion. The strengths of this study include the enrollment of a large cohort, and with good evidence to support slight differences in risk of perforation or expulsion between the IUDs that may not be clinically significant.

•• Ramos-Rivera M, Averbach S, Selvaduray P, Gibson A, Ngo LL. Complications after interval postpartum intrauterine device insertion. Am J Obstet Gynecol. 2022;226:95.e1-95.e8.

Article  PubMed  Google Scholar 

Turok DK, Gurtcheff SE, Gibson K, Handley E, Simonsen S, Murphy PA. Operative management of intrauterine device complications: a case series report. Contraception. 2010;82:354–7.

Aoun J, Dines VA, Stovall DW, Mete M, Nelson CB, Gomez-Lobo V. Effects of age, parity, and device type on complications and discontinuation of intrauterine devices. Obstet Gynecol. 2014;123:585–92.

Article  PubMed  Google Scholar 

Rowe PJ, Boccard S, Farley TMM, et al. Long-term reversible contraception: twelve years of experience with the TCu380A and TCu220C. Contraception. 1997;56:341–52.

Google Scholar 

Rivera R, Chen-Mok M, Mcmullen S. Analysis of client characteristics that may affect early discontinuation of the TCu-380A IUD. 1999.

•• Gilliam ML, Jensen JT, Eisenberg DL, Thomas MA, Olariu A, Creinin MD. Relationship of parity and prior cesarean delivery to levonorgestrel 52 mg intrauterine system expulsion over 6 years. Contraception. 2021;103:444–9.

Article  CAS  PubMed  Google Scholar 

• Keenahan L, Bercaw-Pratt JL, Adeyemi O, Hakim J, Sangi-Haghpeykar H, Dietrich JE. Rates of intrauterine device expulsion among adolescents and young women. J Pediatr Adolesc Gynecol. 2021;34:362–5.

Article  PubMed  Google Scholar 

Bahamondes L, Díaz J, Marchi NM, Petta CA, Cristofoletti MDL, Gomez G. Performance of copper intrauterine devices when inserted after an expulsion. Hum Reprod. 1995;10:2917–8.

• Averbach SH, Ermias Y, Jeng G, Curtis KM, Whiteman MK, Berry-Bibee E, Jamieson DJ, Marchbanks PA, Tepper NK, Jatlaoui TC. Expulsion of intrauterine devices after postpartum placement by timing of placement, delivery type, and IUD type: a systematic review and meta-analysis. Am J Obstet Gynecol. 2020;223:177. This systematic review and meta-analysis pooled studies examining postpartum IUD placement and rates of expulsion, and examined a total of 7661 placements. Immediate postpartum placement and early inpatient placement had higher rates of expulsion compared to interval placement (10.2% and 13.2% compared to 1.8%). LNG IUD expulsion occurred more often after immediate postpartum placement when compred to Cu IUD (27.4% vs 12.4%), with an adjusted risk of 1.90 among immediate placement after vaginal deliveries. Understanding risks of expulsion can help providers better counsel patients and screen for expulsion at follow up.

Armstrong MA, Raine-Bennett T, Reed SD, et al. Association of the timing of postpartum intrauterine device insertion and breastfeeding with risks of intrauterine device expulsion. JAMA Netw open. 2022. https://doi.org/10.1001/JAMANETWORKOPEN.2021.48474.

Article  PubMed  PubMed Central  Google Scholar 

Trussell J. Contraceptive failure in the United States. Contraception. 2011;83:397–404.

Article  PubMed  PubMed Central  Google Scholar 

Berenson AB, Tan A, Hirth JM, Wilkinson GS. Complications and continuation of intrauterine device use among commercially insured teenagers. Obstet Gynecol. 2013;121:951–8.

Article  PubMed  PubMed Central  Google Scholar 

Thonneau P, Almont T, De E, Rochebrochard L, Maria B. Risk factors for IUD failure: results of a large multicentre case-control study. Hum Reprod. 2006;21:2612–6.

Article  PubMed  Google Scholar 

Xiong X, Buekens P, Wollast E. IUD use and the risk of ectopic pregnancy: a meta-analysis of case-control studies. Contraception. 1995;52:23–34.

Article  CAS  PubMed  Google Scholar 

Schultheis P, Montoya MN, Zhao Q, Archer J, Madden T, Peipert JF. Contraception and ectopic pregnancy risk: a prospective observational analysis. Am J Obstet Gynecol. 2021;224:228–9.

Article  PubMed  Google Scholar 

Anteby E, Revel A, Ben-Chetrit A, Rosen B, Tadmor O, Yagel S. Intrauterine device failure: relation to its location within the uterine cavity. Obstet Gynecol. 1993;81:112–4.

CAS  PubMed  Google Scholar 

Eisenberg DL, Tyson N, Espey E, Practice CG, Reversible L-A. Clinical challenges of long-acting reversible contraceptive methods. Obstet Gynecol. 2016;128:E69–77.

Article  Google Scholar 

Brahmi D, Steenland MW, Renner RM, Gaffield ME, Curtis KM. Pregnancy outcomes with an IUD in situ: a systematic review. Contraception. 2012;85:131–9.

Article  PubMed  Google Scholar 

Stabile G, Cracco F, Nappi L, Sorrentino F, Vitale SG, Angioni S, Carlucci S, Ricci G. Hysteroscopic removal of intrauterine device in pregnancy: a scoping review to guide personalized care. Med 2022;58:1688–1688

Dewan R, Dewan A, Singal S, Bharti R, Kaim M. Non-visualisation of strings after postplacental insertion of copper-T 380A intrauterine device. J Fam Plan Reprod Heal Care. 2017;43:186–94.

Article  Google Scholar 

Dubovis M, Rizk N. Retained copper fragments following removal of a copper intrauterine device: two case reports. Case Reports Women’s Heal. 2020;27: e00208.

Article  Google Scholar 

Sarver J, Cregan M, Cain D. Fractured copper intrauterine device (IUD) retained in the uterine wall leading to hysterectomy: a case report. Case Reports Women’s Heal. 2021;29: e00287.

Article  Google Scholar 

Wilson S, Tan G, Baylson M, Schreiber C. Controversies in family planning: how to manage a fractured

留言 (0)

沒有登入
gif