Fuhler GM. The immune system and microbiome in pregnancy. Best Pract Res Clin Gastroenterol. 2020;101671:44–5. https://doi.org/10.1016/j.bpg.2020.101671.
Lyall F, Bulmer JN, Duffie E, Cousins F, Theriault A, Robson SC. Human trophoblast invasion and spiral artery transformation: the role of PECAM-1 in normal pregnancy, preeclampsia, and fetal growth restriction. Am J Pathol. 2001;158:1713–21. https://doi.org/10.1016/S0002-9440(10)64127-2.
Article CAS PubMed PubMed Central Google Scholar
Aisagbonhi O, Morris GP. Human leukocyte antigens in pregnancy and preeclampsia. Front Genet. 2022;13:884275. https://doi.org/10.3389/fgene.2022.884275.
Article CAS PubMed PubMed Central Google Scholar
Abril-Rodriguez G, Ribas A. SnapShot: immune checkpoint inhibitors. Cancer Cell. 2017;31(848–848).
Article CAS PubMed Google Scholar
Persson G, Jorgensen N, Nilsson LL, Andersen LHJ, Hviid TVF. A role for both HLA-F and HLA-G in reproduction and during pregnancy? Hum Immunol. 2020;81:127–33. https://doi.org/10.1016/j.humimm.2019.09.006.
Article CAS PubMed Google Scholar
Klein J, Sato A. The HLA system First of two parts. N Engl J Med. 2000;343:702–9. https://doi.org/10.1056/NEJM200009073431006.
Article CAS PubMed Google Scholar
Dendrou CA, Petersen J, Rossjohn J, Fugger L. HLA variation and disease. Nat Rev Immunol. 2018;18:325–39. https://doi.org/10.1038/nri.2017.143.
Article CAS PubMed Google Scholar
Cruz-Tapias P, Castiblanco, J, Anaya, J. Chapter 10: Major histocompatibility complex: Antigen processing and presentation. In: Anaya, JM, Shoenfeld, Y, Rojas-Villarraga, A, Levy, RA, & Cervera, R, editors. Autoimmunity: From Bench to Bedside (Internet); 2013.
Ferreira LMR, Meissner TB, Tilburgs T, Strominger JL. HLA-G: at the interface of maternal-fetal tolerance. Trends Immunol. 2017;38:272–86. https://doi.org/10.1016/j.it.2017.01.009.
Article CAS PubMed Google Scholar
Lin XX, Xie YM, Zhao SJ, Liu CY, Mor G, Liao AH. Human leukocyte antigens: the unique expression in trophoblasts and their crosstalk with local immune cells. Int J Biol Sci. 2022;18:4043–52. https://doi.org/10.7150/ijbs.73616.
Article CAS PubMed PubMed Central Google Scholar
Aptsiauri N, Garrido F. The challenges of HLA class I loss in cancer immunotherapy: facts and hopes. Clin Cancer Res. 2022;28:5021–9. https://doi.org/10.1158/1078-0432.CCR-21-3501.
Article CAS PubMed Google Scholar
Arnaiz-Villena A, et al. HLA-G: function, polymorphisms and pathology. Int J Immunogenet. 2021;48:172–92. https://doi.org/10.1111/iji.12513.
Article CAS PubMed Google Scholar
Rajagopalan S, Long EO. A human histocompatibility leukocyte antigen (HLA)-G-specific receptor expressed on all natural killer cells. J Exp Med. 1999;189:1093–100. https://doi.org/10.1084/jem.189.7.1093.
Article CAS PubMed PubMed Central Google Scholar
Gonzalez A, Rebmann V, LeMaoult J, Horn PA, Carosella ED, Alegre E. The immunosuppressive molecule HLA-G and its clinical implications. Crit Rev Clin Lab Sci. 2012;49:63–84. https://doi.org/10.3109/10408363.2012.677947.
Article CAS PubMed Google Scholar
Xu X, Zhou Y, Wei H. Roles of HLA-G in the maternal-fetal immune microenvironment. Front Immunol. 2020;11:592010. https://doi.org/10.3389/fimmu.2020.592010.
Article CAS PubMed PubMed Central Google Scholar
Nilsson LL, Hviid TVF. HLA class Ib-receptor interactions during embryo implantation and early pregnancy. Hum Reprod Update. 2022;28:435–54. https://doi.org/10.1093/humupd/dmac007.
Article CAS PubMed Google Scholar
Rajagopalan S, Long EO. KIR2DL4 (CD158d): an activation receptor for HLA-G. Front Immunol. 2012;3:258. https://doi.org/10.3389/fimmu.2012.00258.
Article PubMed PubMed Central Google Scholar
Rajagopalan S, et al. Activation of NK cells by an endocytosed receptor for soluble HLA-G. PLoS Biol. 2006;4:e9. https://doi.org/10.1371/journal.pbio.0040009.
Article CAS PubMed Google Scholar
Zhuang B, Shang J, Yao Y. HLA-G: an important mediator of maternal-fetal immune-tolerance. Front Immunol. 2021;12:744324. https://doi.org/10.3389/fimmu.2021.744324.
Article CAS PubMed PubMed Central Google Scholar
Krop J, Heidt S, Claas FHJ, Eikmans M. Regulatory T cells in pregnancy: it is not all about FOXP3. Front Immunol. 2020;11:1182. https://doi.org/10.3389/fimmu.2020.01182.
Article CAS PubMed PubMed Central Google Scholar
Tilburgs T, et al. Fetal-maternal HLA-C mismatch is associated with decidual T cell activation and induction of functional T regulatory cells. J Reprod Immunol. 2009;82:148–57. https://doi.org/10.1016/j.jri.2009.05.003.
Article CAS PubMed Google Scholar
Svensson-Arvelund J, et al. The human fetal placenta promotes tolerance against the semiallogeneic fetus by inducing regulatory T cells and homeostatic M2 macrophages. J Immunol. 2015;194:1534–44. https://doi.org/10.4049/jimmunol.1401536.
Article CAS PubMed Google Scholar
Goodridge JP, Burian A, Lee N, Geraghty DE. HLA-F and MHC class I open conformers are ligands for NK cell Ig-like receptors. J Immunol. 2013;191:3553–62. https://doi.org/10.4049/jimmunol.1300081.
Article CAS PubMed PubMed Central Google Scholar
Jiang L, et al. Extracellular vesicle-mediated secretion of HLA-E by trophoblasts maintains pregnancy by regulating the metabolism of decidual NK cells. Int J Biol Sci. 2021;17:4377–95. https://doi.org/10.7150/ijbs.63390.
Article CAS PubMed PubMed Central Google Scholar
Papuchova H, Meissner TB, Li Q, Strominger JL, Tilburgs T. The dual role of HLA-C in tolerance and immunity at the maternal-fetal interface. Front Immunol. 2019;10:2730. https://doi.org/10.3389/fimmu.2019.02730.
Article CAS PubMed PubMed Central Google Scholar
Lashley LE, Haasnoot GW, Spruyt-Gerritse M, Claas FH. Selective advantage of HLA matching in successful uncomplicated oocyte donation pregnancies. J Reprod Immunol. 2015;112:29–33. https://doi.org/10.1016/j.jri.2015.05.006.
Meuleman T, Haasnoot GW, van Lith JMM, Verduijn W, Bloemenkamp KWM, Claas FHJ. Paternal HLA-C is a risk factor in unexplained recurrent miscarriage. Am J Reprod Immunol. 2018;79(2). https://doi.org/10.1111/aji.12797.
Collins M, Ling V, Carreno BM. The B7 family of immune-regulatory ligands. Genome Biol. 2005;6:223. https://doi.org/10.1186/gb-2005-6-6-223.
Article CAS PubMed PubMed Central Google Scholar
Greenwald RJ, Freeman GJ, Sharpe AH. The B7 family revisited. Annu Rev Immunol. 2005;23:515–48. https://doi.org/10.1146/annurev.immunol.23.021704.115611.
Article CAS PubMed Google Scholar
Zhao Y, Zheng Q, Jin L. The role of B7 family molecules in maternal-fetal immunity. Front Immunol. 2020;11:458. https://doi.org/10.3389/fimmu.2020.00458.
Article CAS PubMed PubMed Central Google Scholar
Pulanco MC, Madsen AT, Tanwar A, Corrigan DT, Zang X. Recent advancements in the B7/CD28 immune checkpoint families: new biology and clinical therapeutic strategies. Cell Mol Immunol. 2023;20(7):694–713. https://doi.org/10.1038/s41423-023-01019-8.
Veras E, Kurman RJ, Wang TL, Shih IM. PD-L1 expression in human placentas and gestational trophoblastic diseases. Int J Gynecol Pathol. 2017;36:146–53. https://doi.org/10.1097/pgp.0000000000000305.
Article CAS PubMed PubMed Central Google Scholar
Petroff MG, Kharatyan E, Torry DS, Holets L. The immunomodulatory proteins B7-DC, B7–H2, and B7–H3 are differentially expressed across gestation in the human placenta. Am J Pathol. 2005;167:465–73. https://doi.org/10.1016/s0002-9440(10)62990-2.
Article CAS PubMed PubMed Central Google Scholar
Latchman Y, et al. PD-L2 is a second ligand for PD-1 and inhibits T cell activation. Nat Immunol. 2001;2:261–8. https://doi.org/10.1038/85330.
Article CAS PubMed Google Scholar
Bardhan K, Anagnostou T, Boussiotis VA. The PD1:PD-L1/2 pathway from discovery to clinical implementation. Front Immunol. 2016;7:550. https://doi.org/10.3389/fimmu.2016.00550.
留言 (0)