Mapping Brazilian Expansion Risk Levels of Mango Weevil (Sternochetus mangiferae Fabricius) Based on MaxEnt

Abdulla NR, Rwegasira GM, Jensen KMV, Mwatawala MW, Offenberg J (2015) Control of mango seed weevils (Sternochetusmangiferae) using the African Weaver Ant (Oecophyllalonginoda Latreille) (Hymenoptera: Formicidae). J Appl Entomology.https://doi.org/10.1111/jen.12260

Article  Google Scholar 

Aidoo OF, da Silva RS, Santana Junior PA, Souza PGC, Kyerematen R, Owusu-Bremang F, et al. (2022) Model-based prediction of the potential geographical distribution of the invasive coconut mite, Aceria guerreronis Keifer (Acari: Eriophyidae) based on MaxEnt. Agric For. Entomol: 1–15. Available from: https://doi.org/10.1111/afe.12502

Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP (2015) spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography 38:541–545. https://doi.org/10.1111/ecog.01132

Article  Google Scholar 

Barbosa FR, Paranhos BAJ, Sa LAN, Lemos RNS, Silva RA (2008) Pragas quarentenárias que ameaçam a cultura da mangueira no Brasil. Petrolina. (Embrapa Semi-Árido. Circular técnica, 87. http://www.infoteca.cnptia.embrapa.br/infoteca/handle/doc/160518. Acessed 26 August 2021

Bhattacharyya B, Pujari D das M (2016) Mango weevils: identification, biology and integrated management. In: PANDEYA AK, MALL P (Eds). Insect Pests Management in Fruit Crops. Biotech Books 35–49

Boria RA, Olson LE, Goodman SM, Anderson EP (2014) Spatial filtering to reduce sampling bias can improve the performance of ecological niche models. Ecol Model 275:73–77. https://doi.org/10.1016/j.ecolmodel.2013.12.012

Article  Google Scholar 

Brown JL (2014) SDMtoolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5:694–700. https://doi.org/10.1111/2041-210X.12200

Article  Google Scholar 

Burgiel SW, Muir AA (2010) Invasive species, climate change and ecosystem-based adaptation: addressing multiple drivers of global change. Global Invasive Species Programme (GISP). Nairobi, Kenya. 64 p. https://www.iucn.org/content/invasive-species-climate-change-and-ecosystem-based-adaptation-addressing-multiple-drivers-global-change. Accessed 09 September 2021

CABI, 2015. Sternochetus mangiferae. [Distribution map]. In: Distribution Maps of Plant / Pests, Wallingford, UK: CABI. Map 180 4th revision. https://doi.org/10.1079/DMPP/20153427315

Chefaoui RM, Assis J, Duarte CM, Serrão EA (2015) Large-scale prediction of seagrass distribution integrating landscape metrics and environmental factors: the case of Cymodoceanodosa (Mediterranean–Atlantic). Estuaries Coasts 39:123–137. https://doi.org/10.1007/s12237-015-9966-y

Article  CAS  Google Scholar 

DALY C (2006) Guidelines for assessing the suitability of spatial climate data sets. Int J Climatol. https://doi.org/10.1002/joc.1322

Article  Google Scholar 

EFSA Plant Health Panel, Bragard C, Dehnen-Schmutz K, Di Serio F, Gonthier P, Jacques M-A, JaquesMiret JA, Justesen AF, Magnusson CS, Milonas P, Navas-Cortes JA, Parnell S, Potting R, Reignault PL, Thulke HH, Van der Werf W, VicentCivera A, Yuen J, Zappalà L, Czwienczek E, MacLeod A (2018) Scientific opinion on the pest categorisation of Sternochetusmangiferae. EFSA J 16(10):5439,24. https://doi.org/10.2903/j.efsa.2018.5439

Article  Google Scholar 

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers and Distributions 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Article  Google Scholar 

EMBRAPA – Empresa Brasileira de Pesquisa Agropecuária (2020) Instituições se unem para conter broca-do-caroço da manga. Disponível em: https://www.embrapa.br/busca-de-noticias/-/noticia/52119013/instituicoes-se-unem-para-conter-broca-do-caroco-da-manga?p_auth=HKb7maax. Accessed 20 Dec 2020

Food and agriculture organization of the united nations – FAO. FAOSTAT. Disponível em: <http://www.fao.org/faostat/en/#data/QC/ visualize>. Acessed 01 September. 2020

Fick SE, Hijmans RJ (2017) WorldClim 2: new 1km spatial resolution climate surfaces for global land areas. Int J of Climatol 37(12):4302–4315. https://doi.org/10.1002/joc.5086

Article  Google Scholar 

FISH J, Chiche Y, Roger D, Negussie E et al (2010) Mainstreaming gender into prevention and management of invasive species. Global Invasive Species Programme (GISP). Nairobi, Kenya. 64 p. https://portals.iucn.org/library/node/9837 Acessed 09 September 2021

Franklin J (2010) Mapping species distributions. Cambridge University Press, New York. https://doi.org/10.1017/CBO9780511810602

Book  Google Scholar 

GBIF.org (26 Jan 2022) GBIF Occurrence Download https://doi.org/10.15468/dl.2ctj4m

EPPO. EPPO Global Database (2022). Available: https://gd.eppo.int/taxon/CRYPMA.

Hansen JD, Armstrong JW, Brown SA (1989) The distribution and biological observations of the mango seed weevil, Chryptorhynchusmangiferae (Coleoptera: Curculionidae), in Hawaii. Proc Hawaii Entomol Soc 29:31–39

Google Scholar 

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978

Article  Google Scholar 

Instituto brasileiro de geografia e estatística – IBGE. SIDRA. https://sidra.ibge.gov.br/Tabela/1613 Acessed 14 august 2022

Kumar S, Stohlgren TJ (2009) Maxent modeling for predicting suitable habitat for threatened and endangered tree Canacomyricamonticola in New Caledonia. J Ecol Nat Environ 1:94–98

Google Scholar 

Kumar S, Neven LG, Yee WL (2014) Assessing the potential for establishment of western cherry fruit fly using ecological niche modeling. J Econ Entomol 107:1032±1044. https://doi.org/10.1603/EC14052

Article  Google Scholar 

Kumar S, Neven LG, Zhu H, Zhang R (2015) Assessing the global risk of establishment of Cydiapomonella (Lepidoptera: Tortricidae) using CLIMEX and MaxEnt Niche models. J of Econ Entomology 108:1708–1719. https://doi.org/10.1093/jee/tov166

Article  Google Scholar 

Lima JRF (2022) Comportamento das exportações de manga do brasil: março de 2022. Observatório de Mercado da Manga da Embrapa Semiárido. April 07 2022 https://www.embrapa.br/documents/1355026/60636822/Boletim+Manga+-+Marco+de+2022/d8998a67-0ae5-67a6-61fb-dbe624958181 Accessed 14 september 2022.

Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28:385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x

Article  Google Scholar 

Liu C, White M, Newell G (2013) Selecting thresholds for the prediction of species occurrence with presence-only data. J of Biogeography 40:778–789. https://doi.org/10.1111/jbi.12058

Article  Google Scholar 

MAPA - Ministério da Agricultura Pecuária e Abastecimento (2017) Instrução Normativa nº 34, de 5 de setembro de 2017. https://www.defesa.agricultura.sp.gov.br/legislacoes/instrucao-normativa-n-34-de-5-de-setembro-de-2017,1268.html. Accessed 12 April 2022.

MAPA - Ministério da Agricultura Pecuária e Abastecimento (2018) Instrução Normativa nº 38, de 1 de outubro de 2018. https://www.in.gov.br/materia/- sset_publisher/Kujrw0TZC2Mb/content/id/43461167/do1–2018–10–02-instrucaonormativa-n-38-de-1-de-outubro-de-2018–43461024. Accessed 12 September 2022.

Merow C, Smith MJ, Silander JA (2013) A practical guide to MaxEnt for modeling species’ distributions: what it does, and why inputs and settings matter. Ecography 36:1058±1069. https://doi.org/10.1111/j.1600-0587.2013.07872.x

Article  Google Scholar 

Morales NS, Fernández IC, Baca-González V (2017) MaxEnt’s parameter configuration and small samples: are we paying attention to recommendations? A systematic review. PeerJ https://doi.org/10.7717/peerj.3093.

Mota JS, Barbosa LR, Marchioro CA (2022) Suitable areas for invasive insect pests in Brazil and the potential impacts for eucalyptus forestry. Pest Manag Science 78(6):2596–2606. https://doi.org/10.1002/ps.6891

Article  CAS  Google Scholar 

Ning S, Wei J, Feng J (2017) Predicting the current potential and future worldwide distribution of the onion maggot, Delia antiqua using maximum entropy ecological niche modeling. PLoS One 12:e0171190. https://doi.org/10.1371/journal.pone.0171190

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nogues-Bravo D, Rodríguez J, Hortal J, Batra P, Araújo MB (2008) Climate change, humans, and the extinction of the Woolly Mammoth. PLoS Biology 4(6):e79. https://doi.org/10.1371/journal.pbio.0060079

Article  CAS  Google Scholar 

Owens HL, Campbell LP, Dornak LL, Saupe EE, Barve N, Soberón J, Ingenloff K, Lira-Noriega A, Hensz CM, Myers CE, Peterson AT (2013) Constraints on interpretation of ecological niche models by limited environmental ranges on calibration areas. Ecol Model 263:10–18. https://doi.org/10.1016/j.ecolmodel.2013.04.011

Article  Google Scholar 

Peterson AT, Papeş M, Soberón J (2008) Rethinking receiver operating characteristic analysis applications in ecological niche modeling. Ecol Model 213:63–72. https://doi.org/10.1016/j.ecolmodel.2007.11.008

Article  Google Scholar 

Peterson A, Soberón J, Pearson RG, Anderson RP, Martínez-Meyer E, Nakamura M, Araújo MB (2011) Ecological niches and geogrpahical distributions Princeton. Princeton University Press, Oxford

Book  Google Scholar 

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259. https://doi.org/10.1016/j.ecolmodel.2005.03.026

Article  Google Scholar 

Phillips SJ et al (2009) Sample selection bias and presence-only distribution models: implications for background and pseudo-absence data. Ecol Appl 19:181–197. https://doi.org/10.1890/07-2153.1

Article  PubMed  Google Scholar 

Phillips SJ et al (2017) Opening the black box: an open-source release of Maxent. Ecography 40:887–893. https://doi.org/10.1111/ecog.03049

Article  Google Scholar 

Ramos RS, Kumar L, Shabani F, Picanço MC (2018) Mapping global risk levels of Bemisiatabaci in areas of suitability for open field tomato cultivation under current and future climates. PLoS ONE. https://doi.org/10.1371/journal.pone.0198925

Article  PubMed  PubMed Central  Google Scholar 

Rank A, Ramos RS, da Silva RS, Soares JRS, Picanço NC, Fidelis EG (2020) Risk of the introduction of Lobesiabotrana in suitable areas for Vitis vinifera. J of Pest Science. https://doi.org/10.1007/s10340-020-01246-2

Article  Google Scholar 

Rukazambuga-Ntirushwa D (2009). Land-husbandry, Water-harvesting and Hillside-irrigation (LWH) project: Pest Management Plan (PMP) and Arrangement for LWH (E2741 V3)., 1–117. http://documents1.worldbank.org/curated/en/472921468107083310/pdf/E24710V30P2478110Same0info0as0E2227.pdf

Santana Junior PA, Kumar L, Da Silva RS, Pereira JL, Picanço MC (2019) Assessing the impact of climate change on the worldwide distribution of Dalbulusmaidis (DeLong) using MaxEnt. Pest Manag Science 75:2706–2715. https://doi.org/10.1002/ps.5379

Article  CAS  Google Scholar 

Seebens H et al (2017) No saturation in the accumulation of alien species worldwide. Nat Publ Group. https://doi.org/10.1038/ncomms14435

Article  Google Scholar 

Shah KA, Patel MB, Patel RJ, Parmar PK (2010) Mangiferaindica (mango). Pharmacognosy reviews. Gujarat, India 4:382–324. https://doi.org/10.4103/0973-7847.65325

Article  Google Scholar 

Silva AC, Ricalde MP (2017) First Occurrence of Sternochetusmangiferae (Fabricius) (Coleoptera: Curculionidae) in Brazil. Neotrop Entomol 46:587–590. https://doi.org/10.1007/s13744-017-0523-1

Article  CAS  PubMed  Google Scholar 

Silva AC, Ricalde MP, Scalzer RR, Zilli JE, Lopes RB (2022) Natural occurrence of Beauveriabassiana on adults of the invasive mango seed weevil Sternochetusmangiferae (Coleoptera: Curculionidae) in Brazil. J Plant Dis Prot 129:79–84. https://doi.org/10.1007/s41348-021-00550-y

Article  CAS  Google Scholar 

Smith ESC, Brown H (2008) Northern territory. Department of Primary Industry, Fisheries and Mines, 2008. Mango Seed Weevil (Sternochetus mangiferae). Available at: https://hdl.handle.net/10070/543666 Accessed 13 September 2022.

Steven J, et al (2020) Software Maxent para modelagem de nichos e distribuições de espécies (Versão 3.4.1). http://biodiversityinformatics.amnh.org/open_source/maxent/ Acessed 12 August. 2020.

Verghese A, Nagaraju DK, Jayanthi PDK, Madhura HS (2005) Association of mango stone weevil, Sternochetusmangiferae (Fabricius) (Coleoptera: Curculionidae) with fruit drop in mango. Crop Prot 24(5):479–481. https://doi.org/10.1016/j.cropro.2004.07.010

Article  Google Scholar 

Warren DL, Wright AN, Seifert SN, Shaffer HB (2014) Incorporating model complexity and spatial sampling bias into ecological niche models of climate change risks faced by 90 California vertebrate species of concern. Divers and Distributions 20(3):334–343. https://doi.org/10.1111/ddi.12160

Article  Google Scholar 

Wei B, Wang R, Hou K, Wang X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using MaxEnt model under climate change in China. Glob Ecol Conservation 16:e00477. https://doi.org/10.1016/j.gecco.2018.e00477

Article  Google Scholar 

Williamson JR (2014) Initiating ipm for mango weevil, Sternochetus mangiferae (fabricius) (coleoptera: curculionidae), in the U.S. Virgin Islands. [Proceedings of the Caribbean Food Crops Society], 50 Puerto Rico: Caribbean Food Crops Society. 155–156. http://ageconsearch.umn.edu/record/253339/files/Williamson.pdf

Xu H, Ding H, Li M, Qiang S, Guo J, Han Z, Huang Z, Sun H, He S, Wu H, Wan F (2020) The distribution and economic losses of alien species invasion to China. Biol Invasions 8:1495–1500. https://doi.org/10.1007/s10530-005-5841-2

Article  Google Scholar 

Yang XQ, Kushwaha SPS, Saran S, Xu J, Roy PS (2013) Maxent modeling for predicting the potential distribution of medicinal plant, Justiciaadhatoda L. in Lesser Himalayan foothills. Ecol Eng 51:83–87. https://doi.org/10.1016/j.ecoleng.2012.12.004

Article  CAS 

留言 (0)

沒有登入
gif