Centers for Disease Control and Prevention. COVID Data Tracker. https://covid.cdc.gov/covid-data-tracker. Accessed 2022, May 03.
Centers for Disease Control and Prevention. COVID Data Tracker Weekly Review. https://www.cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html. Published August 26, 2022. Accessed August 30, 2022.
Groff D, Sun A, Ssentongo AE, et al. Short-term and Long-term Rates of Postacute Sequelae of SARS-CoV-2 Infection: A Systematic Review. JAMA Netw Open. 2021;4(10):e2128568.
Samrah SM, Al-Mistarehi AH, Kewan T, et al. Viral Clearance Course of COVID-19 Outbreaks. J Multidiscip Healthc. 2021;14:555-565.
Malik P, Patel K, Pinto C, et al. Post-acute COVID-19 syndrome (PCS) and health-related quality of life (HRQoL)-A systematic review and meta-analysis. J Med Virol. 2022;94(1):253-262.
Venkatesan P. NICE guideline on long COVID. Lancet Respir Med. 2021;9(2):129.
World Health Organization. Coronavirus disease (COVID-19): Post COVID-19 condition. https://www.who.int/news-room/questions-and-answers/item/coronavirus-disease-(covid-19)-post-covid-19-condition. Published December 16, 2022. Accessed August 22, 2022.
Center for Disease Control and Prevention. Long COVID or Post-COVID Conditions. https://www.cdc.gov/coronavirus/2019-ncov/long-term-effects/index.html#print. Published July 11, 2022. Accessed August 22, 2022.
Davis HE, Assaf GS, McCorkell L, et al. Characterizing long COVID in an international cohort: 7 months of symptoms and their impact. EClinicalMedicine. 2021;38:101019.
Hernandez-Romieu AC, Carton TW, Saydah S, et al. Prevalence of Select New Symptoms and Conditions Among Persons Aged Younger Than 20 Years and 20 Years or Older at 31 to 150 Days After Testing Positive or Negative for SARS-CoV-2. JAMA Netw Open. 2022;5(2):e2147053.
Michelen M, Manoharan L, Elkheir N, et al. Characterising long COVID: a living systematic review. BMJ Glob Health. 2021;6(9). doi:10.1136/bmjgh-2021-005427
Wang L, Foer D, MacPhaul E, Lo YC, Bates DW, Zhou L. PASCLex: A comprehensive post-acute sequelae of COVID-19 (PASC) symptom lexicon derived from electronic health record clinical notes. J Biomed Inform. 2022;125:103951.
Alizadeh R, Aghsaeifard Z. Does COVID19 activates previous chronic pain? A case series. Ann Med Surg (Lond). 2021;61:169-171.
Kemp HI, Corner E, Colvin LA. Chronic pain after COVID-19: implications for rehabilitation. Br J Anaesth. 2020;125(4):436-440.
Shanthanna H, Nelson AM, Kissoon N, Narouze S. The COVID-19 pandemic and its consequences for chronic pain: a narrative review. Anaesthesia. 2022;77(9):1039-1050.
Qin ES, Gold LS, Singh N, et al. Physical function and fatigue recovery at 6 months after hospitalization for COVID-19. PM R. June 2022. doi:10.1002/pmrj.12866
Khoja O, Silva Passadouro B, Mulvey M, et al. Clinical Characteristics and Mechanisms of Musculoskeletal Pain in Long COVID. J Pain Res. 2022;15:1729-1748.
Maury A, Lyoubi A, Peiffer-Smadja N, de Broucker T, Meppiel E. Neurological manifestations associated with SARS-CoV-2 and other coronaviruses: A narrative review for clinicians. Rev Neurol . 2021;177(1-2):51-64.
Fernández-de-Las-Peñas C, Navarro-Santana M, Plaza-Manzano G, Palacios-Ceña D, Arendt-Nielsen L. Time course prevalence of post-COVID pain symptoms of musculoskeletal origin in patients who had survived severe acute respiratory syndrome coronavirus 2 infection: a systematic review and meta-analysis. Pain. 2022;163(7):1220-1231.
Karaarslan F, Demircioğlu Güneri F, Kardeş S. Postdischarge rheumatic and musculoskeletal symptoms following hospitalization for COVID-19: prospective follow-up by phone interviews. Rheumatol Int. 2021;41(7):1263-1271.
Ojeda A, Calvo A, Cuñat T, et al. Characteristics and influence on quality of life of new-onset pain in critical COVID-19 survivors. Eur J Pain. 2022;26(3):680-694.
Harapan BN, Yoo HJ. Neurological symptoms, manifestations, and complications associated with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease 19 (COVID-19). J Neurol. 2021;268(9):3059-3071.
Lippi G, Wong J, Henry BM. Myalgia may not be associated with severity of coronavirus disease 2019 (COVID-19). World J Emerg Med. 2020;11(3):193-194.
Li LQ, Huang T, Wang YQ, et al. COVID-19 patients’ clinical characteristics, discharge rate, and fatality rate of meta-analysis. J Med Virol. 2020;92(6):577-583.
Tran VT, Porcher R, Pane I, Ravaud P. Course of post COVID-19 disease symptoms over time in the ComPaRe long COVID prospective e-cohort. Nat Commun. 2022;13(1):1812.
Karaarslan F, Güneri FD, Kardeş S. Long COVID: rheumatologic/musculoskeletal symptoms in hospitalized COVID-19 survivors at 3 and 6 months. Clin Rheumatol. 2022;41(1):289-296.
Tuzun S, Keles A, Okutan D, Yildiran T, Palamar D. Assessment of musculoskeletal pain, fatigue and grip strength in hospitalized patients with COVID-19. Eur J Phys Rehabil Med. 2021;57(4):653-662.
Fernández-de-Las-Peñas C, Palacios-Ceña D, Gómez-Mayordomo V, et al. Prevalence of post-COVID-19 symptoms in hospitalized and non-hospitalized COVID-19 survivors: A systematic review and meta-analysis. Eur J Intern Med. 2021;92:55-70.
Jason LA, Islam M, Conroy K, et al. COVID-19 Symptoms Over Time: Comparing Long-Haulers to ME/CFS. Fatigue. 2021;9(2):59-68.
Attal N, Martinez V, Bouhassira D. Potential for increased prevalence of neuropathic pain after the COVID-19 pandemic. Pain Rep. 2021;6(1):e884.
Joshi D, Gyanpuri V, Pathak A, et al. Neuropathic Pain Associated with COVID-19: a Systematic Review of Case Reports. Curr Pain Headache Rep. 2022;26(8):595-603.
McFarland AJ, Yousuf MS, Shiers S, Price TJ. Neurobiology of SARS-CoV-2 interactions with the peripheral nervous system: implications for COVID-19 and pain. Pain Rep. 2021;6(1):e885.
Mackay A. A Paradigm for Post-Covid-19 Fatigue Syndrome Analogous to ME/CFS. Front Neurol. 2021;12:701419.
Saud A, Naveen R, Aggarwal R, Gupta L. COVID-19 and Myositis: What We Know So Far. Curr Rheumatol Rep. 2021;23(8):63.
Galluzzo C, Chiapparoli I, Corrado A, Cantatore FP, Salvarani C, Pipitone N. Rare forms of inflammatory myopathies - part I, generalized forms. Expert Rev Clin Immunol. 2023;19(2):169-183.
Sacchi MC, Tamiazzo S, Lauritano EC, Bonometti R. Case report of COVID-19 in an elderly patient: could SARS-CoV2 trigger myositis? Eur Rev Med Pharmacol Sci. 2020;24(22):11960-11963.
Movahedi N, Ziaee V. COVID-19 and myositis; true dermatomyositis or prolonged post viral myositis? Pediatr Rheumatol Online J. 2021;19(1):86.
Qian J, Xu H. COVID-19 Disease and Dermatomyositis: A Mini-Review. Front Immunol. 2021;12:747116.
Mehan WA, Yoon BC, Lang M, Li MD, Rincon S, Buch K. Paraspinal Myositis in Patients with COVID-19 Infection. AJNR Am J Neuroradiol. 2020;41(10):1949-1952.
Singh B, Kaur P, Mechineni A, Maroules M. Rhabdomyolysis in COVID-19: Report of Four Cases. Cureus. 2020;12(9):e10686.
Hannah JR, Ali SS, Nagra D, et al. Skeletal muscles and Covid-19: a systematic review of rhabdomyolysis and myositis in SARS-CoV-2 infection. Clin Exp Rheumatol. 2022;40(2):329-338.
Cuthbertson BH, Roughton S, Jenkinson D, Maclennan G, Vale L. Quality of life in the five years after intensive care: a cohort study. Crit Care. 2010;14(1):R6.
Goettler CE, Pryor JP, Reilly PM. Brachial plexopathy after prone positioning. Crit Care. 2002;6(6):540-542.
Malik GR, Wolfe AR, Soriano R, et al. Injury-prone: peripheral nerve injuries associated with prone positioning for COVID-19-related acute respiratory distress syndrome. Br J Anaesth. 2020;125(6):e478-e480.
Tankisi H, de Carvalho M, Z’Graggen WJ. Critical Illness Neuropathy. J Clin Neurophysiol. 2020;37(3):205-207.
Finsterer J, Scorza FA, Scorza CA, Fiorini AC. Peripheral neuropathy in COVID-19 is due to immune-mechanisms, pre-existing risk factors, anti-viral drugs, or bedding in the Intensive Care Unit. Arq Neuropsiquiatr. 2021;79(10):924-928.
Frithiof R, Rostami E, Kumlien E, et al. Critical illness polyneuropathy, myopathy and neuronal biomarkers in COVID-19 patients: A prospective study. Clin Neurophysiol. 2021;132(7):1733-1740.
Koch S, Spuler S, Deja M, et al. Critical illness myopathy is frequent: accompanying neuropathy protracts ICU discharge. J Neurol Neurosurg Psychiatry. 2011;82(3):287-293.
Latronico N, Bolton CF. Critical illness polyneuropathy and myopathy: a major cause of muscle weakness and paralysis. Lancet Neurol. 2011;10(10):931-941.
Druschky A, Herkert M, Radespiel-Tröger M, et al. Critical illness polyneuropathy: clinical findings and cell culture assay of neurotoxicity assessed by a prospective study. Intensive Care Med. 2001;27(4):686-693.
Lad H, Saumur TM, Herridge MS, et al. Intensive Care Unit-Acquired Weakness: Not just Another Muscle Atrophying Condition. Int J Mol Sci. 2020;21(21). doi:10.3390/ijms21217840
Vanhorebeek I, Latronico N, Van den Berghe G. ICU-acquired weakness. Intensive Care Med. 2020;46(4):637-653.
Cabañes-Martínez L, Villadóniga M, González-Rodríguez L, et al. Neuromuscular involvement in COVID-19 critically ill patients. Clin Neurophysiol. 2020;131(12):2809-2816.
Bednarík J, Vondracek P, Dusek L, Moravcova E, Cundrle I. Risk factors for critical illness polyneuromyopathy. J Neurol. 2005;252(3):343-351.
De Jonghe B, Sharshar T, Lefaucheur JP, et al. Paresis acquired in the intensive care unit: a prospective multicenter study. JAMA. 2002;288(22):2859-2867.
Guarneri B, Bertolini G, Latronico N. Long-term outcome in patients with critical illness myopathy or neuropathy: the Italian multicentre CRIMYNE study. J Neurol Neurosurg Psychiatry. 2008;79(7):838-841.
Soares MN, Eggelbusch M, Naddaf E, et al. Skeletal muscle alterations in patients with acute Covid-19 and post-acute sequelae of Covid-19. J Cachexia Sarcopenia Muscle. 2022;13(1):11-22.
Phetsouphanh C, Darley DR, Wilson DB, et al. Immunological dysfunction persists for 8 months following initial mild-to-moderate SARS-CoV-2 infection. Nat Immunol. 2022;23(2):210-216.
Khazaal S, Harb J, Rima M, et al. The Pathophysiology of Long COVID throughout the Renin-Angiotensin System. Molecules. 2022;27(9). doi:10.3390/molecules27092903
Cascella M, Del Gaudio A, Vittori A, et al. COVID-Pain: Acute and Late-Onset Painful Clinical Manifestations in COVID-19 - Molecular Mechanisms and Research Perspectives. J Pain Res. 2021;14:2403-2412.
Shiers S, Ray PR, Wangzhou A, et al. ACE2 and SCARF expression in human dorsal root ganglion nociceptors: implications for SARS-CoV-2 virus neurological effects. Pain. 2020;161(11):2494-2501.
Grobbelaar LM, Venter C, Vlok M, et al. SARS-CoV-2 spike protein S1 induces fibrin(ogen) resistant to fibrinolysis: implications for microclot formation in COVID-19. Biosci Rep. 2021;41(8). doi:10.1042/BSR20210611
Kell DB, Pretorius E. The potential role of ischaemia-reperfusion injury in chronic, relapsing diseases such as rheumatoid arthritis, Long COVID, and ME/CFS: evidence, mechanisms, and therapeutic implications. Biochem J. 2022;479(16):1653-1708.
Fedorowski A. Postural orthostatic tachycardia syndrome: clinical presentation, aetiology and management. J Intern Med. 2019;285(4):352-366.
Shouman K, Vanichkachorn G, Cheshire WP, et al. Autonomic dysfunction following COVID-19 infection: an early experience. Clin Auton Res. 2021;31(3):385-394.
Kersten J, Baumhardt M, Hartveg P, et al. Long COVID: Distinction between Organ Damage and Deconditioning. J Clin Med Res. 2021;10(17). doi:10.3390/jcm10173782
Kimmig LM, Rako ZA, Ziegler S, et al. Long-term comprehensive cardiopulmonary phenotyping of COVID-19. Respir Res. 2022;23(1):263.
de Boer E, Petrache I, Goldstein NM, et al. Decreased Fatty Acid Oxidation and Altered Lactate Production during Exercise in Patients with Post-acute COVID-19 Syndrome. Am J Respir Crit Care Med. 2022;205(1):126-129.
Qin ES, Gold LS, Hough CL, et al. Patient-reported functional outcomes 30 days after hospitalization for COVID-19. PM R. 2022;14(2):173-182.
An Analysis of the Prolonged COVID-19 Symptoms Survey by Patient-Led Research Team. https://patientresearchcovid19.com/research/report-1/#Support_by_Medical_Stafff. Accessed March 2, 2022.
Dundumalla S, Barshikar S, Niehaus WN, Ambrose AF, Kim SY, Abramoff BA. A survey of dedicated PASC clinics: Characteristics, barriers and spirit of collaboration. PM R. 2022;14(3):348-356.
Gemelli Against COVID-19 Post-Acute Care Study Group. Post-COVID-19 global health strategies: the need for an interdisciplinary approach. Aging Clin Exp Res. 2020;32(8):1613-1620.
Lopez-Leon S, Wegman-Ostrosky T, Perelman C, et al. More than 50 long-term effects of COVID-19: a systematic review and meta-analysis. Sci Rep. 2021;11(1):16144.
Mueller JT, McConnell K, Burow PB, Pofahl K, Merdjanoff AA, Farrell J. Impacts of the COVID-19 pandemic on rural America. Proc Natl Acad Sci U S A. 2021;118(1). doi:10.1073/pnas.2019378118
Cheng KJG, Sun Y, Monnat SM. COVID-19 Death Rates Are Higher in Rural Counties With Larger Shares of Blacks and Hispanics. J Rural Health. 2020;36(4):602-608.
Hale N, Meit M, Pettyjohn S, Wahlquist A, Loos M. The implications of long COVID for rural communities. J Rural Health. March 2022. doi:10.1111/jrh.12655
Sisó-Almirall A, Brito-Zerón P, Conangla Ferrín L, et al. Long Covid-19: Proposed Primary Care Clinical Guidelines for Diagnosis and Disease Management. Int J Environ Res Public Health. 2021;18(8). doi:10.3390/ijerph18084350
Blitshteyn S, Whiteson JH, Abramoff B, et al. Multi-disciplinary collaborative consensus guidance statement on the assessment and treatment of autonomic dysfunction in patients with post-acute sequelae of SARS-CoV-2 infection (PASC). PM R. September 2022. doi:10.1002/pmrj.12894
Pascolini S, Vannini A, Deleonardi G, et al. COVID-19 and Immunological Dysregulation: Can Autoantibodies be Useful? Clin Transl Sci. 2021;14(2):502-508.
Seeßle J, Waterboer T, Hippchen T, et al. Persistent Symptoms in Adult Patients 1 Year After Coronavirus Disease 2019 (COVID-19): A Prospective Cohort Study. Clin Infect Dis. 2022;74(7):1191-1198.
Gomes C, Zuniga M, Crotty KA, et al. Autoimmune anti-DNA and anti-phosphatidylserine antibodies predict development of severe COVID-19. Life Sci Alliance. 2021;4(11). doi:10.26508/lsa.202101180
Lingel H, Meltendorf S, Billing U, et al. Unique autoantibody prevalence in long-term recovered SARS-CoV-2-infected individuals. J Autoimmun. 2021;122:102682.
Xu C, Fan J, Luo Y, et al. Prevalence and Characteristics of Rheumatoid-Associated Autoantibodies in Patients with COVID-19. J Inflamm Res. 2021;14:3123-3128.
Jordhani M, Ruci D, Ruci V. ANTI-PHOSPHOLIPID AUTOANTIBODIES IN COVID-19 PATIENTS. Ann Rheum Dis. 2021;80(1). https://ard.bmj.com/content/80/Suppl_1/1381.1.
Rojas M, Rodríguez Y, Acosta-Ampudia Y, et al. Autoimmunity is a hallmark of post-COVID syndrome. J Transl Med. 2022;20(1):129.
Taeschler P, Cervia C, Zurbuchen Y, et al. Autoantibodies in COVID-19 correlate with antiviral humoral responses and distinct immune signatures. Allergy. 2022;77(8):2415-2430.
Mahler M, Andrade LE, Casiano CA, Malyavantham K, Fritzler MJ. Anti-DFS70 antibodies: an update on our current understanding and their clinical usefulness. Expert Rev Clin Immunol. 2019;15(3):241-250.
Conrad K, Röber N, Andrade LEC, Mahler M. The Clinical Relevance of Anti-DFS70 Autoantibodies. Clin Rev Allergy Immunol. 2017;52(2):202-216.
Kaczmarski P, Karuga FF, Szmyd B, et al. The Role of Inflammation, Hypoxia, and Opioid Receptor Expression in Pain Modulation in Patients Suffering from Obstructive Sleep Apnea. Int J Mol Sci. 2022;23(16). doi:10.3390/ijms23169080
Cerqueira É, Marinho DA, Neiva HP, Lourenço O. Inflammatory Effects of High and Moderate Intensity Exercise-A Systematic Review. Front Physiol. 2019;10:1550.
Barrea L, Grant WB, Frias-Toral E, et al. Dietary Recommendations for Post-COVID-19 Syndrome. Nutrients. 2022;14(6). doi:10.3390/nu14061305
Naureen Z, Dautaj A, Nodari S, et al. Proposal of a food supplement for the management of post-COVID syndrome. Eur Rev Med Pharmacol Sci. 2021;25(1 Suppl):67-73.
Mikkelsen ME, Jackson JC, Hopkins RO, et al. Peer Support as a Novel Strategy to Mitigate Post-Intensive Care Syndrome. AACN Adv Crit Care. 2016;27(2):221-229.
O’Kelly B, Vidal L, McHugh T, Woo J, Avramovic G, Lambert JS. Safety and efficacy of low dose naltrexone in a long covid cohort; an interventional pre-post study. Brain Behav Immun Health. 2022;24:100485.
Grech S, Borg JN, Cuschieri S. Back pain: An aftermath of Covid-19 pandemic? A Malta perspective. Musculoskeletal Care. 2022;20(1):145-150.
Annino G, Manzi V, Alashram AR, et al. COVID-19 as a Potential Cause of Muscle Injuries in Professional Italian Serie A Soccer Players: A Retrospective Observational Study. Int J Environ Res Public Health. 2022;19(17). doi:10.3390/ijerph191711117
Maestro A, Varillas-Delgado D, Morencos E, et al. Injury Incidence Increases after COVID-19 Infection: A Case Study with a Male Professional Football Team. Int J Environ Res Public Health. 2022;19(16). doi:10.3390/ijerph191610267
留言 (0)