Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication Details AbstractIntroduction: Diabetes markedly affects the formation and development of intracranial atherosclerosis. The study was aimed at evaluating whether radiomics features can help distinguish plaques primarily associated with diabetes. Materials and Methods: We retrospectively analyzed patients who were admitted to our center because of acute ischemic stroke due to intracranial atherosclerosis between 2016 and 2022. Clinical data, blood biomarkers, conventional plaque features and plaque radiomics features were collected for all patients. Odds ratios (ORs) with 95% confidence intervals (CIs) were determined from logistic regression models. The receiver operating characteristic (ROC) curve and area under the ROC curve (AUC) were used to describe diagnostic performance. The DeLong test was used to compare differences between models. Results: Overall, 157 patients (115 men; mean age, 58.7 ± 10.7 years) were enrolled. Multivariate logistic regression analysis showed that plaque length (OR: 1.17; 95% CI: 1.07–1.28) and area (OR: 1.13; 95% CI: 1.02–1.24) were independently associated with diabetes. On combining plaque length and area as a conventional model, the AUCs of the training and validation cohorts for identifying diabetes patients were 0.789 and 0.720, respectively. On combining radiomics features on T1WI and contrast-enhanced T1WI sequences, a better diagnostic value was obtained in the training and validation cohorts (AUC: 0.889 and 0.861). The DeLong test showed the model combining radiomics and conventional plaque features performed better than the conventional model in both cohorts (p
S. Karger AG, Basel
Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
留言 (0)