Gold cluster encapsulated liposomes: theranostic agent with stimulus triggered release capability

DeAngelis LM, et al. Combination chemotherapy and radiotherapy for primary central nervous system lymphoma: Radiation Therapy Oncology Group Study 93–10. J Clin Oncol. 2002;20(24):4643–8.

Article  PubMed  Google Scholar 

Sriraman SK, Aryasomayajula B, Torchilin VP. Barriers to drug delivery in solid tumors. Tissue Barriers. 2014;2(3): e29528.

Article  PubMed  PubMed Central  Google Scholar 

Fatemi F, et al. Construction of genetically engineered M13K07 helper phage for simultaneous phage display of gold binding peptide 1 and nuclear matrix protein 22 ScFv antibody. Colloids Surf B. 2017;159:770–80.

Article  CAS  Google Scholar 

Koosha F, et al. Mesoporous silica coated gold nanorods: a multifunctional theranostic platform for radiotherapy and X-ray imaging. J Porous Mater. 2021;28(6):1961–8.

Article  CAS  Google Scholar 

Neshastehriz A, et al. In-vitro investigation of green synthesized gold nanoparticle's role in combined photodynamic and radiation therapy of cancerous cells. Adv Nat Sci. 2020;11(4).

Kamalabadi M, et al. Folate functionalized gold-coated magnetic nanoparticles effect in combined electroporation and radiation treatment of HPV-positive oropharyngeal cancer. Med Oncol. 2022;39(12).

Baijal G, et al. Comparative study of one pot synthesis of PEGylated gold and silver nanoparticles for imaging and radiosensitization of oral cancers. Radiat Phys Chem. 2022;194: 109990.

Article  Google Scholar 

Lin M-H, et al. Comparison of organic and inorganic germanium compounds in cellular radiosensitivity and preparation of germanium nanoparticles as a radiosensitizer. Int J Radiat Biol. 2009;85(3):214–26.

Article  CAS  PubMed  Google Scholar 

Porcel E, et al. Platinum nanoparticles: a promising material for future cancer therapy? Nanotechnology. 2010;21(8): 085103.

Article  Google Scholar 

Shirkhanloo H, et al. Novel semisolid design based on bismuth oxide (Bi2O3) nanoparticles for radiation protection. Nanomed Res J. 2017;2(4):230–8.

CAS  Google Scholar 

Chithrani DB, et al. Gold nanoparticles as radiation sensitizers in cancer therapy. Radiat Res. 2010;173(6):719–28.

Article  CAS  PubMed  Google Scholar 

Zhang X-D, et al. In vivo renal clearance, biodistribution, toxicity of gold nanoclusters. Biomaterials. 2012;33(18):4628–38.

Article  CAS  PubMed  Google Scholar 

Khlebtsov N, Dykman L. Biodistribution and toxicity of engineered gold nanoparticles: a review of in vitro and in vivo studies. Chem Soc Rev. 2011;40(3):1647–71.

Article  CAS  PubMed  Google Scholar 

Hirn S, et al. Particle size-dependent and surface charge-dependent biodistribution of gold nanoparticles after intravenous administration. Eur J Pharm Biopharm. 2011;77(3):407–16.

Article  CAS  PubMed  Google Scholar 

Drummond DC, et al. Pharmacokinetics and in vivo drug release rates in liposomal nanocarrier development. J Pharm Sci. 2008;97(11):4696–740.

Article  CAS  PubMed  Google Scholar 

Drummond DC, et al. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol Rev. 1999;51(4):691–744.

CAS  PubMed  Google Scholar 

Halm U, et al. A phase II study of pegylated liposomal doxorubicin for treatment of advanced hepatocellular carcinoma. Ann Oncol. 2000;11(1):113–4.

Article  CAS  PubMed  Google Scholar 

Chidiac T, et al. Phase II trial of liposomal doxorubicin (Doxil®) in advanced soft tissue sarcomas. Invest New Drugs. 2000;18(3):253–9.

Article  CAS  PubMed  Google Scholar 

Laginha KM, et al. Determination of doxorubicin levels in whole tumor and tumor nuclei in murine breast cancer tumors. Clin Cancer Res. 2005;11(19):6944–9.

Article  CAS  PubMed  Google Scholar 

Tseng Y-L, Liu J-J, Hong R-L. Translocation of liposomes into cancer cells by cell-penetrating peptides penetratin and tat: a kinetic and efficacy study. Mol Pharmacol. 2002;62(4):864–72.

Article  CAS  PubMed  Google Scholar 

Ng K-Y, et al. The effects of polyethyleneglycol (PEG)-derived lipid on the activity of target-sensitive immunoliposome. Int J Pharm. 2000;193(2):157–66.

Article  CAS  PubMed  Google Scholar 

Parr MJ, et al. Accumulation of liposomal lipid and encapsulated doxorubicin in murine Lewis lung carcinoma: the lack of beneficial effects by coating liposomes with poly (ethylene glycol). J Pharmacol Exp Ther. 1997;280(3):1319–27.

CAS  PubMed  Google Scholar 

Allen TM, Cullis PR. Liposomal drug delivery systems: from concept to clinical applications. Adv Drug Deliv Rev. 2013;65(1):36–48.

Article  CAS  PubMed  Google Scholar 

Biabangard A, et al. Study of FA12 peptide-modified PEGylated liposomal doxorubicin (PLD) as an effective ligand to target Muc1 in mice bearing C26 colon carcinoma: in silico, in vitro, and in vivo study. Expert Opin Drug Deliv. 2022;19(12):1710–24.

Article  CAS  PubMed  Google Scholar 

Bibi S, et al. Trigger release liposome systems: local and remote controlled delivery? J Microencapsul. 2012;29(3):262–76.

Article  CAS  PubMed  Google Scholar 

Amini SM, Kharrazi S, Jaafari MR. Radio frequency hyperthermia of cancerous cells with gold nanoclusters: an in vitro investigation. Gold Bull. 2017;50(1):43–50.

Article  CAS  Google Scholar 

Amin M, Badiee A, Jaafari MR. Improvement of pharmacokinetic and antitumor activity of PEGylated liposomal doxorubicin by targeting with N-methylated cyclic RGD peptide in mice bearing C-26 colon carcinomas. Int J Pharm. 2013;458(2):324–33.

Article  CAS  PubMed  Google Scholar 

Bartlett GR. Phosphorus assay in column chromatography. J Biol Chem. 1959;234:466–8.

Article  CAS  PubMed  Google Scholar 

Bolotin EM, et al. Ammonium sulfate gradients for efficient and stable remote loading of amphipathic weak bases into liposomes and ligandoliposomes. J Liposome Res. 1994;4(1):455–79.

Article  Google Scholar 

Haran G, et al. Transmembrane ammonium sulfate gradients in liposomes produce efficient and stable entrapment of amphipathic weak bases. Biochim Biophys Acta. 1993;1151(2):201–15.

Article  CAS  PubMed  Google Scholar 

Huang Z, Jaafari MR, Szoka FC Jr. Disterolphospholipids: nonexchangeable lipids and their application to liposomal drug delivery. Angew Chem. 2009;121(23):4210–3.

Article  Google Scholar 

Siegel MJ, et al. Radiation dose and image quality in pediatric CT: effect of technical factors and phantom size and shape 1. Radiology. 2004;233(2):515–22.

Article  PubMed  Google Scholar 

Pradhan P, et al. Targeted temperature sensitive magnetic liposomes for thermo-chemotherapy. J Control Release. 2010;142(1):108–21.

Article  CAS  PubMed  Google Scholar 

Lorenzato C, et al. MRI contrast variation of thermosensitive magnetoliposomes triggered by focused ultrasound: a tool for image-guided local drug delivery. Contrast Media Mol Imaging. 2013;8(2):185–92.

Article  CAS  PubMed  Google Scholar 

Zarchi AAK, et al. Synthesis and characterisation of liposomal doxorubicin with loaded gold nanoparticles. IET Nanobiotechnol. 2018;12:846–9.

Article  Google Scholar 

Mathiyazhakan M, et al. Non-invasive controlled release from gold nanoparticle integrated photo-responsive liposomes through pulse laser induced microbubble cavitation. Colloids Surf B. 2015;126:569–74.

Article  CAS  Google Scholar 

Xia Y, et al. Construction of thermal-and light-responsive liposomes noncovalently decorated with gold nanoparticles. RSC Adv. 2014;4(84):44568–74.

Article  CAS  Google Scholar 

Demir B, et al. Gold nanoparticle loaded phytosomal systems: synthesis, characterization and in vitro investigations. RSC Adv. 2014;4(65):34687–95.

Article  CAS  Google Scholar 

Freeny PC, et al. Colorectal carcinoma evaluation with CT: preoperative staging and detection of postoperative recurrence. Radiology. 1986;158(2):347–53.

Article  CAS  PubMed  Google Scholar 

Rifkin MD, Ehrlich S, Marks G. Staging of rectal carcinoma: prospective comparison of endorectal US and CT. Radiology. 1989;170(2):319–22.

Article  CAS  PubMed  Google Scholar 

Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2012;113(3):1641–66.

Article  PubMed  Google Scholar 

Hainfeld, J., et al. Gold nanoparticles: a new X-ray contrast agent. Br J Radiol 2014.

Rabin O, et al. An X-ray computed tomography imaging agent based on long-circulating bismuth sulphide nanoparticles. Nat Mater. 2006;5(2):118–22.

Article  CAS  PubMed  Google Scholar 

Kandanapitiye MS, et al. Synthesis, characterization, and X-ray attenuation properties of ultrasmall BiOI nanoparticles: toward renal clearable particulate CT contrast agents. Inorg Chem. 2014;53(19):10189–94.

留言 (0)

沒有登入
gif