Epithelial Nlrp10 inflammasome mediates protection against intestinal autoinflammation

Franchi, L., Warner, N., Viani, K. & Nuñez, G. Function of Nod-like receptors in microbial recognition and host defense. Immunol. Rev. 227, 106–128 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Strowig, T., Henao-Mejia, J., Elinav, E. & Flavell, R. Inflammasomes in health and disease. Nature 481, 278–286 (2012).

Article  CAS  PubMed  Google Scholar 

Franchi, L. et al. NLRC4-driven production of IL-1β discriminates between pathogenic and commensal bacteria and promotes host intestinal defense. Nat. Immunol. 13, 449–456 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elinav, E. et al. NLRP6 inflammasome regulates colonic microbial ecology and risk for colitis. Cell 145, 745–757 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhu, S. et al. Nlrp9b inflammasome restricts rotavirus infection in intestinal epithelial cells. Nature 546, 667–670 (2017).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Elinav, E., Henao-Mejia, J. & Flavell, R. A. Integrative inflammasome activity in the regulation of intestinal mucosal immune responses. Mucosal Immunol. 6, 4–13 (2013).

Article  CAS  PubMed  Google Scholar 

Levy, M. et al. Microbiota-modulated metabolites shape the intestinal microenvironment by regulating NLRP6 inflammasome signaling. Cell 163, 1428–1443 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Imamura, R. et al. Anti-inflammatory activity of PYNOD and its mechanism in humans and mice. J. Immunol. 184, 5874–5884 (2010).

Article  CAS  PubMed  Google Scholar 

Wang, Y. et al. PYNOD, a novel Apaf‐1/CED4‐like protein is an inhibitor of ASC and caspase‐1. Int. Immunol. 16, 777–786 (2004).

Article  CAS  PubMed  Google Scholar 

Murphy, N., Grehan, B. & Lynch, M. A. Glial uptake of amyloid beta induces NLRP3 inflammasome formation via cathepsin-dependent degradation of NLRP10. Neuromolecular Med. 16, 205–215 (2014).

Article  CAS  PubMed  Google Scholar 

Eisenbarth, S. C. et al. NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 484, 510–513 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Eisenbarth, S. C. et al. Corrigendum: NLRP10 is a NOD-like receptor essential to initiate adaptive immunity by dendritic cells. Nature 530, 504 (2016).

Article  CAS  PubMed  Google Scholar 

Nakajima, S. et al. Characterization of innate and adaptive immune responses in PYNOD-deficient mice. Immunohorizons 2, 129–141 (2018).

Article  CAS  PubMed  Google Scholar 

Vacca, M. et al. NLRP10 enhances CD4+ T-cell-mediated IFNγ response via regulation of dendritic cell-derived IL-12 release. Front. Immunol. 8, 1462 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Joly, S. et al. Cutting edge: Nlrp10 is essential for protective antifungal adaptive immunity against Candida albicans. J. Immunol. 189, 4713–4717 (2012).

Article  CAS  PubMed  Google Scholar 

Clay, G. M. et al. An anti-inflammatory role for NLRP10 in murine cutaneous leishmaniasis. J. Immunol. 199, 2823–2833 (2017).

Article  CAS  PubMed  Google Scholar 

Damm, A., Giebeler, N., Zamek, J., Zigrino, P. & Kufer, T. A. Epidermal NLRP10 contributes to contact hypersensitivity responses in mice. Eur. J. Immunol. 46, 1959–1969 (2016).

Article  CAS  PubMed  Google Scholar 

Lautz, K. et al. NLRP10 enhances Shigella-induced pro-inflammatory responses. Cell. Microbiol. 14, 1568–1583 (2012).

Article  CAS  PubMed  Google Scholar 

Lakso, M. et al. Efficient in vivo manipulation of mouse genomic sequences at the zygote stage. Proc. Natl Acad. Sci. USA 93, 5860–5865 (1996).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Próchnicki, T. et al. Mitochondrial damage activates the NLRP10 inflammasome. Nat. Immunol. https://doi.org/10.21203/rs.3.rs-1295136/v1 (2023).

Article  Google Scholar 

Lee, G.-S. et al. The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature 492, 123–127 (2012).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schroder, K. & Tschopp, J. The inflammasomes. Cell 140, 821–832 (2010).

Article  CAS  PubMed  Google Scholar 

Hafner-Bratkovič, I. et al. NLRP3 lacking the leucine-rich repeat domain can be fully activated via the canonical inflammasome pathway. Nat. Commun. 9, 5182 (2018).

Article  PubMed  PubMed Central  Google Scholar 

MacDonald, J. A., Wijekoon, C. P., Liao, K.-C. & Muruve, D. A. Biochemical and structural aspects of the ATP-binding domain in inflammasome-forming human NLRP proteins. IUBMB Life 65, 851–862 (2013).

Article  CAS  PubMed  Google Scholar 

Nowarski, R. et al. Epithelial IL-18 equilibrium controls barrier function in colitis. Cell 163, 1444–1456 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Lopez-Castejon, G. & Brough, D. Understanding the mechanism of IL-1β secretion. Cytokine Growth Factor Rev. 22, 189–195 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Mantovani, A., Dinarello, C. A., Molgora, M. & Garlanda, C. Interleukin-1 and related cytokines in the regulation of inflammation and immunity. Immunity 50, 778–795 (2019).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Seregin, S. S. et al. NLRP6 function in inflammatory monocytes reduces susceptibility to chemically induced intestinal injury. Mucosal Immunol. 10, 434–445 (2017).

Article  CAS  PubMed  Google Scholar 

Man, S. M. Inflammasomes in the gastrointestinal tract: infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15, 721–737 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zaki, M. H. et al. The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity 32, 379–391 (2010).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ho, Y.-T. et al. Longitudinal single-cell transcriptomics reveals a role for Serpina3n-mediated resolution of inflammation in a mouse colitis model. Cell. Mol. Gastroenterol. Hepatol. 12, 547–566 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Robertson, S. J. et al. Comparison of co-housing and littermate methods for microbiota standardization in mouse models. Cell Rep. 27, 1910–1919 (2019).

Article  CAS  PubMed  Google Scholar 

Smith, S. A. et al. Mitochondrial dysfunction in inflammatory bowel disease alters intestinal epithelial metabolism of hepatic acylcarnitines. J. Clin. Invest. 131, e133371 (2021).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Błażejewski, A. J. et al. Microbiota normalization reveals that canonical caspase-1 activation exacerbates chemically induced intestinal inflammation. Cell Rep. 19, 2319–2330 (2017).

Article  PubMed  Google Scholar 

Becker, C., Fantini, M. C. & Neurath, M. F. High resolution colonoscopy in live mice. Nat. Protoc. 1, 2900–2904 (2006).

Article  CAS  PubMed  Google Scholar 

Wirtz, S. et al. Chemically induced mouse models of acute and chronic intestinal inflammation. Nat. Protoc. 12, 1295–1309 (2017).

Article  CAS  PubMed  Google Scholar 

Sato, T. et al. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459, 262–265 (2009).

Article 

留言 (0)

沒有登入
gif