FGF-21 and GDF-15 are increased in migraine and associated with the severity of migraine-related disability

Feigin V, Vos T, Nichols E, Owolabi M, Carroll W, Dichgans M et al (2020) The global burden of neurological disorders: translating evidence into policy. Lancet Neurol 19:255–265. https://doi.org/10.1016/s1474-4422(19)30411-9

Article  PubMed  Google Scholar 

Gross E, Lisicki M, Fischer D, Sándor P, Schoenen J (2019) The metabolic face of migraine - from pathophysiology to treatment. Nat Rev Neurol 15:627–643. https://doi.org/10.1038/s41582-019-0255-4

Article  CAS  PubMed  Google Scholar 

Powers S, Radak Z, Ji L (2016) Exercise-induced oxidative stress: past, present and future. J Physiol 594:5081–5092. https://doi.org/10.1113/jp270646

Article  CAS  PubMed  PubMed Central  Google Scholar 

Pingitore A, Lima G, Mastorci F, Quinones A, Iervasi G, Vassalle C (2015) Exercise and oxidative stress: potential effects of antioxidant dietary strategies in sports. Nutrition 31:916–922. https://doi.org/10.1016/j.nut.2015.02.005

Article  CAS  PubMed  Google Scholar 

Schiavone S, Jaquet V, Trabace L, Krause K (2013) Severe life stress and oxidative stress in the brain: from animal models to human pathology. Antioxid Redox Signal 18:1475–1490. https://doi.org/10.1089/ars.2012.4720

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schoonman G, Evers D, Terwindt G, van Dijk J, Ferrari M (2006) The prevalence of premonitory symptoms in migraine: a questionnaire study in 461 patients. Cephalalgia 26:1209–1213. https://doi.org/10.1111/j.1468-2982.2006.01195.x

Article  CAS  PubMed  Google Scholar 

Arngrim N, Schytz H, Britze J, Amin F, Vestergaard M, Hougaard A et al (2016) Migraine induced by hypoxia: an MRI spectroscopy and angiography study. Brain 139:723–737. https://doi.org/10.1093/brain/awv359

Article  PubMed  Google Scholar 

Broessner G, Rohregger J, Wille M, Lackner P, Ndayisaba J, Burtscher M (2016) Hypoxia triggers high-altitude headache with migraine features: A prospective trial. Cephalalgia 36:765–771. https://doi.org/10.1177/0333102415610876

Article  PubMed  Google Scholar 

Trivedi M, Holger D, Bui A, Craddock T, Tartar J (2017) Short-term sleep deprivation leads to decreased systemic redox metabolites and altered epigenetic status. PloS one. 12:e0181978. https://doi.org/10.1371/journal.pone.0181978

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelucci F, Silva V, Dal Pizzol C, Spir L, Praes C, Maibach H (2014) Physiological effect of olfactory stimuli inhalation in humans: an overview. Int J Cosmetic Sci 36:117–123. https://doi.org/10.1111/ics.12096

Article  CAS  Google Scholar 

Franken C, Lambrechts N, Govarts E, Koppen G, Den Hond E, Ooms D et al (2017) Phthalate-induced oxidative stress and association with asthma-related airway inflammation in adolescents. Int J Hyg Envir Heal 220:468–477. https://doi.org/10.1016/j.ijheh.2017.01.006

Article  CAS  Google Scholar 

Kwiatkowska K, Bacalini M, Sala C, Kaziyama H, de Andrade D, Terlizzi R et al (2020) Analysis of Epigenetic Age Predictors in Pain-Related Conditions. Front 8:172. https://doi.org/10.3389/fpubh.2020.00172

Article  Google Scholar 

Hahad O, Prochaska J, Daiber A, Muenzel T (2019) Environmental Noise-Induced Effects on Stress Hormones, Oxidative Stress, and Vascular Dysfunction: Key Factors in the Relationship between Cerebrocardiovascular and Psychological Disorders. Oxid Med Cell Longev 2019:4623109. https://doi.org/10.1155/2019/4623109

Article  CAS  PubMed  PubMed Central  Google Scholar 

Reyngoudt H, Achten E, Paemeleire K (2012) Magnetic resonance spectroscopy in migraine: what have we learned so far? Cephalalgia 32:845–859. https://doi.org/10.1177/0333102412452048

Article  PubMed  Google Scholar 

Sándor P, Dydak U, Schoenen J, Kollias S, Hess K, Boesiger P et al (2005) MR-spectroscopic imaging during visual stimulation in subgroups of migraine with aura. Cephalalgia 25:507–518. https://doi.org/10.1111/j.1468-2982.2005.00900.x

Article  PubMed  Google Scholar 

Yorns W, Hardison H (2013) Mitochondrial dysfunction in migraine. Seminars in pediatric neurology 20:188–193. https://doi.org/10.1016/j.spen.2013.09.002

Article  PubMed  Google Scholar 

Okada H, Araga S, Takeshima T, Nakashima K (1998) Plasma lactic acid and pyruvic acid levels in migraine and tension-type headache. Headache 38:39–42. https://doi.org/10.1046/j.1526-4610.1998.3801039.x

Article  CAS  PubMed  Google Scholar 

Eikermann-Haerter K, Dileköz E, Kudo C, Savitz S, Waeber C, Baum M et al (2009) Genetic and hormonal factors modulate spreading depression and transient hemiparesis in mouse models of familial hemiplegic migraine type 1. J Clin Investig 119:99–109. https://doi.org/10.1172/jci36059

Article  CAS  PubMed  Google Scholar 

Littlewood J, Glover V, Sandler M, Peatfield R, Petty R, Clifford Rose F (1984) Low platelet monoamine oxidase activity in headache: no correlation with phenolsulphotransferase, succinate dehydrogenase, platelet preparation method or smoking. J Neurol Neurosurg Psychiatry 47:338–343. https://doi.org/10.1136/jnnp.47.4.338

Article  CAS  PubMed  PubMed Central  Google Scholar 

Sangiorgi S, Mochi M, Riva R, Cortelli P, Monari L, Pierangeli G et al (1994) Abnormal platelet mitochondrial function in patients affected by migraine with and without aura. Cephalalgia 14:21–23. https://doi.org/10.1046/j.1468-2982.1994.1401021.x

Article  CAS  PubMed  Google Scholar 

Sparaco M, Feleppa M, Lipton R, Rapoport A, Bigal M (2006) Mitochondrial dysfunction and migraine: evidence and hypotheses. Cephalalgia 26:361–372. https://doi.org/10.1111/j.1468-2982.2005.01059.x

Article  CAS  PubMed  Google Scholar 

Woldeamanuel Y, Rapoport A, Cowan R (2015) The place of corticosteroids in migraine attack management: A 65-year systematic review with pooled analysis and critical appraisal. Cephalalgia 35:996–1024. https://doi.org/10.1177/0333102414566200

Article  CAS  PubMed  Google Scholar 

Derry C, Derry S, and Moore R (2014) Caffeine as an analgesic adjuvant for acute pain in adults. Cochrane Database Syst. Rev. 2014:CD009281. https://doi.org/10.1002/14651858.CD009281.pub3.

Kim K, Lee M (2021) GDF15 as a central mediator for integrated stress response and a promising therapeutic molecule for metabolic disorders and NASH. Biochim. Biophys. Acta. Gen. Subj. 1865:129834. https://doi.org/10.1016/j.bbagen.2020.129834

Article  CAS  PubMed  Google Scholar 

Fujita Y, Taniguchi Y, Shinkai S, Tanaka M, and Ito M (2016) Secreted growth differentiation factor 15 as a potential biomarker for mitochondrial dysfunctions in aging and age-related disorders. Geriatr. Gerontol. Int.:17–29. https://doi.org/10.1111/ggi.12724.

Strelau J, Sullivan A, Böttner M, Lingor P, Falkenstein E, Suter-Crazzolara C et al (2000) Growth/differentiation factor-15/macrophage inhibitory cytokine-1 is a novel trophic factor for midbrain dopaminergic neurons in vivo. J Neurosci 20:8597–8603. https://doi.org/10.1523/jneurosci.20-23-08597.2000

Article  CAS  PubMed  PubMed Central  Google Scholar 

Subramaniam S, Strelau J, Unsicker K (2003) Growth differentiation factor-15 prevents low potassium-induced cell death of cerebellar granule neurons by differential regulation of Akt and ERK pathways. J Biol Chem 278:8904–8912. https://doi.org/10.1074/jbc.M210037200

Article  CAS  PubMed  Google Scholar 

Li P, Lv H, Zhang B, Duan R, Zhang X, Lin P et al (2022) Growth Differentiation Factor 15 Protects SH-SY5Y Cells From Rotenone-Induced Toxicity by Suppressing Mitochondrial Apoptosis. Front. in Aging Neurosci 14:869558. https://doi.org/10.3389/fnagi.2022.869558

Article  CAS  Google Scholar 

Montero R, Yubero D, Villarroya J, Henares D, Jou C, Rodríguez M et al (2016) GDF-15 Is Elevated in Children with Mitochondrial Diseases and Is Induced by Mitochondrial Dysfunction. PloS one 11:e0148709. https://doi.org/10.1371/journal.pone.0148709

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cardoso A, Fernandes A, Aguilar-Pimentel J, de Angelis M, Guedes J, Brito M et al (2018) Towards frailty biomarkers: Candidates from genes and pathways regulated in aging and age-related diseases. Ageing Res Rev 47:214–277. https://doi.org/10.1016/j.arr.2018.07.004

Article  CAS  PubMed  Google Scholar 

Davis R, Liang C, Sue C (2016) A comparison of current serum biomarkers as diagnostic indicators of mitochondrial diseases. Neurology 86:2010–2015. https://doi.org/10.1212/wnl.0000000000002705

Article  CAS  PubMed  PubMed Central  Google Scholar 

Keipert S, Ost M (2021) Stress-induced FGF21 and GDF15 in obesity and obesity resistance. Trends Endocrin Met 32:904–915. https://doi.org/10.1016/j.tem.2021.08.008

Article  CAS  Google Scholar 

Conte M, Martucci M, Chiariello A, Franceschi C, Salvioli S (2020) Mitochondria, immunosenescence and inflammaging: a role for mitokines? Semin Immunopathol 42:607–617. https://doi.org/10.1007/s00281-020-00813-0

Article  CAS  PubMed  PubMed Central  Google Scholar 

Grech O, Mollan S, Wakerley B, Fulton D, Lavery G, and Sinclair A (2021) The Role of Metabolism in Migraine Pathophysiology and Susceptibility. Life-Basel. 11. http://doi.org/https://doi.org/10.3390/life11050415.

van Tilburg M, Parisien M, Boles R, Drury G, Smith-Voudouris J, Verma V et al (2020) A genetic polymorphism that is associated with mitochondrial energy metabolism increases risk of fibromyalgia. Pain 161:2860–2871. https://doi.org/10.1097/j.pain.0000000000001996

Article  CAS  PubMed  PubMed Central  Google Scholar 

Boles R, Zaki E, Lavenbarg T, Hejazi R, Foran P, Freeborn J et al (2009) Are pediatric and adult-onset cyclic vomiting syndrome (CVS) biologically different conditions? Relationship of adult-onset CVS with the migraine and pediatric CVS-associated common mtDNA polymorphisms 16519T and 3010A. Neurogastroenterol Motil 21:936-e972. https://doi.org/10.1111/j.1365-2982.2009.01305.x

Article  CAS  PubMed 

留言 (0)

沒有登入
gif