Metabolic and Nutritional Support

Williams F.N. Jeschke M.G. Chinkes D.L. et al.

Modulation of the hypermetabolic response to trauma: temperature, nutrition, and drugs.

J Am Coll Surg. 208: 489-502Gauglitz G.G. Herndon D.N. Jeschke M.G.

Insulin resistance postburn: underlying mechanisms and current therapeutic strategies.

J Burn Care Res. 29: 683-694Jeschke M.G. van Baar M.E. Choudhry M.A. et al.

Burn injury.

Nat Rev Dis Primers. 6: 11Cree M.G. Aarsland A. Herndon D.N. et al.

Role of fat metabolism in burn trauma-induced skeletal muscle insulin resistance.

Crit Care Med. 35: S476-S483Gauglitz G.G. Herndon D.N. Kulp G.A. et al.

Abnormal insulin sensitivity persists up to three years in pediatric patients post burn.

J Clin Endocrinol Metab. 94: 1656-1664Jeschke M.G. Chinkes D.L. Finnerty C.C. et al.

Patholphysiologic response to severe burn injury.

Ann Surg. 248: 387-401Abdullahi A. Jeschke M.G.

Taming the flames: targeting white adipose tissue browning in hypermetabolic conditions.

Endocr Rev. 38: 538-549Hall K.L. Shahrokhi S. Jeschke M.G.

Enteral nutrition support in burn care: a review of current recommendations as instituted in the Ross Tilley Burn Centre.

Nutrients. 4: 1554-1565Hart D.W. Wolf S.E. Herndon D.N. et al.

Energy expenditure and caloric balance after burn: increased feeding leads to fat rather than lean mass accretion.

Ann Surg. 235: 152-161Bogdanovic E. Jeschke M.G.

Insulin therapy improves protein metabolism in the critically ill.

Crit Care. 16: 125Pereira C.T. Jeschke M.G. Herndon D.N.

Beta-blockade in burns.

Novartis Found Symp. 280 (): 238-248Rousseau A.-F. Losser M.-R. Ichai C. et al.

ESPEN endorsed recommendations: nutritional therapy in major burns.

Clin Nutr. 32: 497-502Hart D.W. Wolf S.E. Chinkes D.L. et al.

Effects of early excision and aggressive enteral feeding on hypermetabolism, catabolism, and sepsis after severe burn.

J Trauma. 54 (): 755-761Ireton-Jones C.S. Turner Jr., W.W. Liepa G.U. et al.

Equations for the estimation of energy expenditures in patients with burns with special reference to ventilatory status.

J Burn Care Rehabil. 13: 330-333Hart D.W. Wolf S.E. Zhang X.J. et al.

Efficacy of a high-carbohydrate diet in catabolic illness.

Crit Care Med. 29: 1318-1324

Use of indirect calorimetry in clinical nutrition.

Nutr Clin Pract. 7: 207-221Saffle J.R. Medina E. Raymond J. et al.

Use of indirect calorimetry in the nutritional management of burned patients.

J Trauma. 25: 32-39

Glutamine in burn injury.

Nutr Clin Pract. 34: 681-687Gamliel Z. DeBiasse M.A. Demling R.H.

Essential microminerals and their response to burn injury.

J Burn Care Rehabil. 17: 264-272

Antioxidant micronutrients in major trauma and burns: evidence and practice.

Nutr Clin Pract. 21: 438-449Gottschlich M.M. Mayes T. Khoury J. et al.

Hypovitaminosis D in acutely injured pediatric burn patients.

J Am Diet Assoc. 104 (): 931-941Gottschlich M.M. Mayes T. Khoury J. et al.

Clinical trial of vitamin D2 vs D3 supplementation in critically ill pediatric burn patients.

JPEN - J Parenter Enter Nutr. 41: 412-421

Trace element requirements in critically ill burned patients.

J Trace Elem Med Biol. 21: 44-48Berger M.M. Binnert C. Chiolero R.L. et al.

Trace element supplementation after major burns increases burned skin trace element concentrations and modulates local protein metabolism but not whole-body substrate metabolism.

Am J Clin Nutr. 85: 1301-1306Meyer N.A. Muller M.J. Herndon D.N.

Nutrient support of the healing wound.

New Horiz. 2: 202-214Berger M.M. Baines M. Raffoul W. et al.

Trace element supplementation after major burns modulates antioxidant status and clinical course by way of increased tissue trace element concentrations.

Am J C Am J Clin Nutr. 85: 1293-1300Rehou S. Shahrokhi S. Natanson R. et al.

Antioxidant and trace element supplementation reduce the inflammatory response in critically ill burn patients.

J Burn Care Res. 39: 1-9Herndon D.N. Hawkins H.K. Nguyen T.T. et al.

Characterization of growth hormone enhanced donor site healing in patients with large cutaneous burns.

Ann Surg. 221: 649-656Jeschke M.G. Herndon D.N. Wolf S.E. et al.

Recombinant human growth hormone alters acute phase reactant proteins, cytokine expression, and liver morphology in burned rats.

J Surg Res. 83: 122-129Wu X. Thomas S.J. Herndon D.N. et al.

Insulin decreases hepatic acute phase protein levels in severely burned children.

Surgery. 135: 196-202Jeschke M.G. Chrysopoulo M.T. Herndon D.N. et al.

Increased expression of insulin-like growth factor-I in serum and liver after recombinant human growth hormone administration in thermally injured rats.

J Surg Res. 85: 171-177Branski L.K. Herndon D.N. Barrow R.E. et al.

Randomized controlled trial to determine the efficacy of long-term growth hormone treatment in severely burned children.

Ann Surg. 250: 514-523Aili Low J.F. Barrow R.E. Mittendorfer B. et al.

The effect of short-term growth hormone treatment on growth and energy expenditure in burned children.

Burns. 27: 447-452Hart D.W. Wolf S.E. Beauford R.B. et al.

Determinants of blood loss during primary burn excision.

Surgery. 130: 396-402Takala J. Ruokonen E. Webster N.R. et al.

Increased mortality associated with growth hormone treatment in critically ill adults.

N Engl J Med. 341: 785-792Gore D.C. Honeycutt D. Jahoor F. et al.

Effect of exogenous growth hormone on whole-body and isolated-limb protein kinetics in burned patients.

Arch Surg. 126: 38-43

Growth hormone therapy in critically ill patients.

N Engl J Med. 341: 837-839Przkora R. Herndon D.N. Suman O.E. et al.

Beneficial effects of extended growth hormone treatment after hospital discharge in pediatric burn patients.

Ann Surg. 243 (): 796-801Ramirez R.J. Wolf S.E. Barrow R.E. et al.

Growth hormone treatment in pediatric burns: a safe therapeutic approach.

Ann Surg. 228: 439-448Herndon D.N. Ramzy P.I. Debroy M.A. et al.

Muscle protein catabolism after severe burn, effects of IGF-1/IGFBP3 treatment.

Ann Surg. 229: 713-720Spies M. Wolf S.E. Barrow R.E. et al.

Modulation of types I and II acute phase reactants with insulin-like growth factor-1/binding protein-3 complex in severely burned children.

Crit Care Med. 30: 83-88Jeschke M.G. Barrow R.E. Herndon D.N.

Insulin-like growth factor I plus insulin-like growth factor binding protein 3 attenuates the proinflammatory acute phase response in severely burned children.

Ann Surg. 231: 246-252Cioffi W.G. Gore D.C. Rue III, L.W. et al.

Insulin-like growth factor-1 lowers protein oxidation in patients with thermal injury.

Ann Surg. 220: 310-319Hart D.W. Wolf S.E. Ramzy P.I. et al.

Anabolic effects of oxandrolone after severe burn.

Ann Surg. 233: 556-564

Metabolic management of patients with severe burns.

World J Surg. 24: 673-680Wolf S.E. Edelman L.S. Kemalyan N. et al.

Effects of oxandrolone on outcome measures in the severely burned: a multicenter prospective randomized double-blind trial.

J Burn Care Res. 27: 131-141Jeschke M.G. Finnerty C.C. Suman O.E. et al.

The effect of oxandrolone on the endocrinologic, inflammatory, and hypermetabolic responses during the acute phase postburn.

Ann Surg. 246: 351-362Pham T.N. Klein M.B. Gibran N.S. et al.

Impact of oxandrolone treatment on acute outcomes after severe burn injury.

J Burn Care Res. 29: 902-906Przkora R. Herndon D.N. Suman O.E.

The effects of oxandrolone and exercise on muscle mass and function in children with severe burns.

Pediatrics. 119: e109-e116Gore D.C. Honeycutt D. Jahoor F. et al.

Propranolol diminishes extremity blood flow in burned patients.

Ann Surg. 213 (): 568-573Herndon D.N. Hart D.W. Wolf S.E. et al.

Reversal of catabolism by beta-blockade after severe burns.

N Engl J Med. 345: 1223-1229Baron P.W. Barrow R.E. Pierre E.J. et al.

Prolonged use of propranolol safely decreases cardiac work in burned children.

J Burn Care Rehabil. 18: 223-227Gore D.C. Chinkes D. Heggers J. et al.

Association of hyperglycemia with increased mortality after severe burn injury.

J Trauma. 51: 540-544Gore D.C. Chinkes D.L. Hart D.W. et al.

Hyperglycemia exacerbates muscle protein catabolism in burn-injured patients.

Crit Care Med. 30: 2438-2442Ferrando A.A. Chinkes D.L. Wolf S.E. et al.

A submaximal dose of insulin promotes net skeletal muscle protein synthesis in patients with severe burns.

Ann Surg. 229: 11-18Pierre E.J. Barrow R.E. Hawkins H.K. et al.

Effects of insulin on wound healing.

J Trauma. 44: 342-345Thomas S.J. Morimoto K. Herndon D.N. et al.

The effect of prolonged euglycemic hyperinsulinemia on lean body mass after severe burn.

Surgery. 132: 341-347Zhang X.J. Chinkes D.L. Wolf S.E. et al.

Insulin but not growth hormone stimulates protein anabolism in skin would and muscle.

Am J Physiol. 276: E712-E720Jeschke M.G. Klein D. Bolder U. et al.

Insulin attenuates the systemic inflammatory response in endotoxemic rats.

Endocrinology. 145: 4084-4093Jeschke M.G. Rensing H. Klein D. et al.

Insulin prevents liver damage and preserves liver function in lipopolysaccharide-induced endotoxemic rats.

J Hepatol. 42: 870-879Klein D. Schubert T. Horch R.E. et al.

Insulin treatment improves hepatic morphology and function through modulation of hepatic signals after severe trauma.

Ann Surg. 240: 340-349Langouche L. Vanhorebeek I. Van den Berghe G.

Therapy insight: the effect of tight glycemic control in acute illness.

Nat Clin Pract Endocrinol Metab. 3: 270-278Brunkhorst F.M. Engel C. Bloos F. et al.

Intensive insulin therapy and pentastarch resuscitation in severe sepsis.

N Engl J Med. 358: 125-139Jeschke M.G. Kraft R. Emdad F. et al.

Glucose control in severely thermally injured pediatric patients: what glucose range should be the target?.

Ann Surg. 252: 521-528Van den Berghe G. Wouters P.J. Bouillon R. et al.

Outcome benefit of intensive insulin therapy in the critically ill: insulin dose versus glycemic control.

Crit Care Med. 31: 359-366Vlasselaers D. Milants I. Desmet L. et al.

Intensive insulin therapy for patients in pediatric intensive care: a prospective, randomized controlled study.

Lancet. 373: 547-556Pidcoke H.F. Wanek S.M. Rohleder L.S. et al.

Glucose variability is associated with high mortality after severe burn.

J Trauma. 67: 990-995Pisarchik A.N. Pochepen O.N. Pisarchyk L.A.

Increasing blood glucose variability is a precursor of sepsis and mortality in burned patients.

PLoS One. 7 ()

Clinical review: glucose control in severely burned patients. Current best practice.

Crit Care. 17: 232Gore D.C. Wolf S.E. Herndon D.N. et al.

Metformin blunts stress-induced hyperglycemia after thermal injury.

J Trauma. 54: 555-561Gore D.C. Wolf S.E. Sanford A. et al.

Influence of metformin on glucose intolerance and muscle catabolism following severe burn injury.

Ann Surg. 241: 334-342Moon R.J. Bascombe L.A. Holt R.I.

The addition of metformin in type 1 diabetes improves insulin sensitivity, diabetic control, body composition and patient well-being.

Diabetes Obes Metab. 9: 143-145

Metformin and pioglitazone: effectively treating insulin resistance.

Curr Med Res Opin. 22: S27-S37

Insulin resistance and improvements in signal transduction.

Endocrine. 29: 73-80Hundal R.S. Inzucchi S.E.

Metformin: new understandings, new uses.

Drugs. 63: 1879-1894Stanojcic M. Finnerty C.C. Jeschke M.G.

Anabolic and anticatabolic agents in critical care.

Curr Opin Crit Care. 22: 325-331

留言 (0)

沒有登入
gif