Immobilization of E. coli expressing γ-glutamyltranspeptidase on its surface for γ-glutamyl compound production

Basso A, Serban S (2019) Industrial applications of immobilized enzymes—a review. Mol Catal 479:110607. https://doi.org/10.1016/j.mcat.2019.110607

Article  CAS  Google Scholar 

Bindal S, Gupta R (2016) Thermo- and salt-tolerant chitosan cross-linked γ-glutamyl transpeptidase from Bacillus licheniformis ER15. Int J Biol Macromol 91:544–553. https://doi.org/10.1016/j.ijbiomac.2016.05.106

Article  CAS  PubMed  Google Scholar 

Castell LM, Newsholme EA (1997) The effect of oral glutamine supplementation on athletes after prolonged, exhaustive exercise. Nutrition 13:738–742. https://doi.org/10.1016/S0899-9007(97)83036-5

Article  CAS  PubMed  Google Scholar 

Chen YY, Tsai MG, Chi MC, Wang TF, Lin LL (2013) Covalent immobilization of Bacillus licheniformis γ-glutamyl transpeptidase on aldehyde-functionalized magnetic nanoparticles. Int J Mol Sci 14:4613–4628. https://doi.org/10.3390/ijms14034613

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chibata I (1986) Biocatalysis: immobilized cells and enzymes. J Mol Catal 37:1–24. https://doi.org/10.1016/0304-5102(86)85134-3

Article  CAS  Google Scholar 

Dunkel A, Köster J, Hofmann T (2007) Molecular and sensory characterization of γ-glutamyl peptides as key contributors to the kokumi taste of edible beans (Phaseolus vulgaris L.). J Agric Food Chem 55:6712–6719. https://doi.org/10.1021/jf071276u

Article  CAS  PubMed  Google Scholar 

El Sayed AS, Fujimoto S, Yamada C, Suzuki H (2010) Enzymatic synthesis of γ-glutamylglutamine, a stable glutamine analogue, by γ-glutamyltranspeptidase from Escherichia coli K-12. Biotechnol Lett 32:1877–1881. https://doi.org/10.1007/s10529-010-0364-z

Article  CAS  PubMed  Google Scholar 

Fukao T, Suzuki H (2021) Enzymatic synthesis of γ-glutamylvalylglycine using bacterial γ-glutamyltranspeptidase. J Agric Food Chem 69:7675–7679. https://doi.org/10.1021/acs.jafc.1c02535

Article  CAS  PubMed  Google Scholar 

Han MJ, Lee SH (2015) An efficient bacterial surface display system based on a novel outer membrane anchoring element from the Escherichia coli protein YiaT. FEMS Microbiol Lett 362:1–7. https://doi.org/10.1093/femsle/fnu002

Article  CAS  PubMed  Google Scholar 

Hillmann H, Hofmann T (2016) Quantitation of key tastants and re-engineering the taste of Parmesan cheese. J Agric Food Chem 64:1794–1805. https://doi.org/10.1021/acs.jafc.6b00112

Article  CAS  PubMed  Google Scholar 

Hillmann H, Behr J, Ehrmann MA, Vogel RF, Hofmann T (2016) Formation of kokumi-enhancing γ-glutamyl dipeptides in parmesan cheese by means of γ-glutamyltransferase activity and stable isotope double-labeling studies. J Agric Food Chem 64:1784–1793. https://doi.org/10.1021/acs.jafc.6b00113

Article  CAS  PubMed  Google Scholar 

Ho TV, Suzuki H (2013) Increase of “umami” and “kokumi” compounds in miso, fermented soybeans, by the addition of bacterial γ-glutamyltranspeptidase. Int J Food Stud 2:39–47. https://doi.org/10.7455/ijfs/2.1.2013.a3

Article  Google Scholar 

Houndijk AP, Rijnsburger ER, Jansen J, Wesdorp RI, Weiss JK, McCamish MA, Teerlink T, Meuwissen SG, Haarman HJ, Thijs LG, van Leeuwen PA (1998) Randomised trial of glutamine-enriched enteral nutrition on infectious morbidity in patients with multiple trauma. Lancet 352:772–776. https://doi.org/10.1016/S0140-6736(98)02007-8

Article  Google Scholar 

Hung CP, Lo HF, Hsu WH, Chen SC, Lin LL (2008) Immobilization of Escherichia coli novablue γ-glutamyltranspeptidase in Ca-alginate-κ-carrageenan beads. Appl Biochem Biotechnol 150:157–170. https://doi.org/10.1007/s12010-008-8244-x

Article  CAS  PubMed  Google Scholar 

Juang TY, Kan SJ, Chen YY, Tsai YL, Lin MG, Lin LL (2014) Surface-functionalized hyperbranched poly(amido acid) magnetic nanocarriers for covalent immobilization of a bacterial γ-glutamyltranspeptidase. Molecules 19:4997–5012. https://doi.org/10.3390/molecules19044997

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kuroda M, Kato Y, Yamazaki J, Kai Y, Mizukoshi T, Miyano M, Eto Y (2012) Determination and quantification of γ-glutamyl-valyl-glycine in commercial fish sauces. J Agric Food Chem 60:7291–7296. https://doi.org/10.1021/jf3012932

Article  CAS  PubMed  Google Scholar 

Labus K, Wolanin K, Radosinski L (2020) Comparative study on enzyme immobilization using natural hydrogel matrices—experimental studies supported by molecular models analysis. Catalysts 10:489. https://doi.org/10.3390/catal10050489

Article  CAS  Google Scholar 

Lacey JM, Wilmore MD (1990) Is glutamine a conditionally essential amino acid? Nutr Rev 48:297–309. https://doi.org/10.1111/j.1753-4887.1990.tb02967.x

Article  CAS  PubMed  Google Scholar 

Miyamura N, Kuroda M, Kato Y, Yamazaki J, Mizukoshi T, Miyano H, Eto Y (2014) Determination and quantification of a kokumi peptide, γ-glutamyl-valyl-glycine, in fermented shrimp paste condiments. Food Sci Technol Res 20:699–703. https://doi.org/10.1111/j.1753-4887.1990.tb02967.x

Article  CAS  Google Scholar 

Ni F, Zhang F, Yao Z, Ye L, Sun Y, Wang H, Zhou Z, Zhu B (2017) Improving the catalytic properties and stability of immobilized γ-glutamyltranspeptidase by post-immobilization with Pharmalyte MT 8∼10.5. Int J Biol Macromol 105:1581–1586. https://doi.org/10.1016/j.ijbiomac.2017.04.050

Article  CAS  PubMed  Google Scholar 

Ohsu T, Amino Y, Nagasaki H, Yamanaka T, Takeshita S, Hatanaka T, Maruyama Y, Miyamura N, Eto Y (2010) Involvement of the calcium-sensing receptor in human taste perception. J Biol Chem 285:1016–1022. https://doi.org/10.1074/jbc.M109.029165

Article  CAS  PubMed  Google Scholar 

Phewpan A, Phuwaprisirisan P, Takahashi H, Ohshima C, Ngamchuachit P, Techaruvichit P, Dirndorfer S, Dawid C, Hofmann T, Keeratipibul S (2020) Investigation of kokumi substances and bacteria in Thai fermented freshwater fish (Pla-ra). J Agric Food Chem 68:10345–10351. https://doi.org/10.1021/acs.jafc.9b06107

Article  CAS  PubMed  Google Scholar 

Phumsombat P, Sano C, Ikezoe H, Hayashi J, Itoh T, Hibi T, Wakayama M (2020) Efficient production of L-theanine using immobilized recombinant Escherichia coli cells expressing a modified γ-glutamyltranspeptidase gene from Pseudomonas nitroreducens. Adv Biol Chem 10:157–171. https://doi.org/10.4236/abc.2020.106012

Article  CAS  Google Scholar 

Suzuki H (2019) Bacterial γ-glutamyltranspeptidase: food and medicinal applications. Science Asia 45:503–508. https://doi.org/10.2306/scienceasia1513-1874.2019.45.503

Article  CAS  Google Scholar 

Suzuki H (2021) γ-Glutamyltranspeptidase essential for the metabolism of γ-glutamyl compounds in bacteria and its application. Biosci Biochem Biotechnol 85:1295–1313. https://doi.org/10.1093/bbb/zbab043

Article  Google Scholar 

Suzuki H, Sasabu A (2023) First example of extracellular surface expression of intrinsically periplasmic Escherichia coli γ-glutamyltranspeptidase, a member of the N-terminal nucleophile hydrolase superfamily, and the use of the cells as a catalyst for γ-glutamylvalylglycine production. J Agric Food Chem 71:1132–1138. https://doi.org/10.1021/acs.jafc.2c05572

Article  CAS  PubMed  Google Scholar 

Suzuki H, Kumagai H, Tochikura T (1986) γ-Glutamyltranspeptidase from Escherichia coli K-12: purification and properties. J Bacteriol 168:1325–1331. https://doi.org/10.1128/jb.168.3.1325-1331.1986

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki H, Izuka S, Minami H, Miyakawa N, Ishihara S, Kumagai H (2003) Use of bacterial γ-glutamyltranspeptidase for enzymatic synthesis of γ-D-glutamyl compounds. Appl Environ Microbiol 69:6399–6404. https://doi.org/10.1128/AEM.69.11.6399-6404.2003

Article  CAS  PubMed  PubMed Central  Google Scholar 

Suzuki H, Yamada C, Kato K (2007) γ-Glutamyl compounds and their enzymatic production using bacterial γ-glutamyltranspeptidase. Amino Acids 32:333–340. https://doi.org/10.1007/s00726-006-0416-9

Article  CAS  PubMed  Google Scholar 

Suzuki H, Fukuyama K, Kumagai H (2020) Bacterial γ-glutamyltranspeptidases, physiological function, structure, catalytic mechanism and application. Proc Jpn Acad Ser B 96:440–469. https://doi.org/10.2183/pjab.96.033

Article  CAS  Google Scholar 

Taniguchi N, Ikeda Y (1998) γ-Glutamyl transpeptidase: catalytic mechanism and gene expression. Adv Enzymol Relat Areas Mol Biol 72:239–278. https://doi.org/10.1002/9780470123188.ch7

Article  CAS  PubMed  Google Scholar 

Tate SS, Meister A (1981) γ-Glutamyl transpeptidase: catalytic, structural and functional aspects. Mol Cell Biochem 39:357–368. https://doi.org/10.1007/BF00232585

Article  CAS  PubMed  Google Scholar 

Thomas S, Balasubramanian KA (2003) Oral glutamine attenuates surgical manipulation-induced alterations in the intestinal brush border membrane. J Surg Res 115:148–156. https://doi.org/10.1016/s0022-4804(03)00212-9

Article  PubMed  Google Scholar 

Toelstede S, Hofmann T (2009) Kokumi-active glutamyl peptides in cheeses and their biogeneration by Penicillium roquefortii. J Agric Food Chem 57:3738–3748. https://doi.org/10.1021/jf900280j

Article  CAS  PubMed  Google Scholar 

Toelstede S, Dunkel A, Hofmann T (2009) A series of kokumi peptides impart the long-lasting mouthfulness of matured Gouda cheese. J Agric Food Chem 57:1440–1448. https://doi.org/10.1021/jf803376d

Article  CAS  PubMed  Google Scholar 

Ueda Y, Sakaguchi M, Hirayama K, Miyajima R, Kimizuka A (1990) Characteristic flavor constituents in water extract of garlic. Agric Biol Chem 54:163–169. https://doi.org/10.1271/bbb1961.54.163

Article 

留言 (0)

沒有登入
gif