Spinocerebellar ataxia type 11 (SCA11): TTBK2 variants, functions and associated disease mechanisms

Harding AE. Classification of the Hereditary Ataxias and Paraplegias. Lancet. 1983;321:1151–5.

Article  Google Scholar 

Marsden JF. Cerebellar ataxia. Handb Clin Neurol. Elsevier B.V.; 2018. p. 261–81.

Jones TM, Shaw JD, Sullivan K, Zesiewicz TA. Treatment of cerebellar ataxia. Neurodegener Dis Manag. 2014;4:379–92.

Article  PubMed  Google Scholar 

Matilla-Dueñas A, Corral-Juan M, Rodríguez-Palmero Seuma A, Vilas D, Ispierto L, Morais S, et al. Rare Neurodegenerative Diseases: Clinical and Genetic Update. Adv Exp Med Biol. 2017;1031:443–96.

Article  PubMed  Google Scholar 

Hersheson J, Haworth A, Houlden H. The inherited ataxias: Genetic heterogeneity, mutation databases, and future directions in research and clinical diagnostics. Hum Mutat. 2012;33:1324–32.

Article  CAS  PubMed  Google Scholar 

Zanni G, Bertini E. X-linked ataxias. Handb Clin Neurol. Elsevier B.V.; 2018. p. 175–189.

Vernon HJ, Bindoff LA. Mitochondrial ataxias. Handb Clin Neurol. Elsevier B.V.; 2018. p. 129–41.

Fogel BL. Autosomal-recessive cerebellar ataxias. Handb Clin Neurol. Elsevier B.V.; 2018. p. 187–209.

Cortese A, Simone R, Sullivan R, Vandrovcova J, Tariq H, Yan YW, et al. Biallelic expansion of an intronic repeat in RFC1 is a common cause of late-onset ataxia. Nat Genet. Springer US; 2019;51:649–58.

Palau F, Espinós C. Autosomal recessive cerebellar ataxias. Orphanet J Rare Dis. 2006;1:47.

Article  PubMed  PubMed Central  Google Scholar 

Witek N, Hawkins J, Hall D. Genetic ataxias: update on classification and diagnostic approaches. Curr Neurol Neurosci Rep. Current Neurology and Neuroscience Reports; 2021;21:13.

Corral-Juan M, Casquero P, Giraldo-Restrepo N, Laurie S, Martinez-Piñeiro A, Mateo-Montero RC, et al. New spinocerebellar ataxia subtype caused by SAMD9L mutation triggering mitochondrial dysregulation (SCA49). Brain Commun. 2022;4.

Coutelier M, Jacoupy M, Janer A, Renaud F, Auger N, Saripella GV, et al. NPTX1 mutations trigger endoplasmic reticulum stress and cause autosomal dominant cerebellar ataxia. Brain. 2022;145:1519–34.

Article  PubMed  Google Scholar 

Mundwiler A, Shakkottai VG. Autosomal-dominant cerebellar ataxias. 1st ed. Handb. Clin. Neurol. Elsevier B.V.; 2018.

Klockgether T, Mariotti C, Paulson HL. Spinocerebellar ataxia. Nat Rev Dis Prim. 2019;5:1–21.

Google Scholar 

Rafehi H, Read J, Szmulewicz DJ, Davies KC, Snell P, Fearnley LG, et al. An intronic GAA repeat expansion in FGF14 causes the autosomal-dominant adult-onset ataxia SCA50/ATX-FGF14. Am J Hum Genet. 2023;110:105–19.

Article  CAS  PubMed  Google Scholar 

Pellerin D, Danzi MC, Wilke C, Renaud M, Fazal S, Dicaire M-J, et al. Deep Intronic FGF14 GAA Repeat Expansion in Late-Onset Cerebellar Ataxia. N Engl J Med. 2023;388:128–41.

Article  CAS  PubMed  Google Scholar 

Ruano L, Melo C, Silva MC, Coutinho P. The Global Epidemiology of Hereditary Ataxia and Spastic Paraplegia: A Systematic Review of Prevalence Studies. Neuroepidemiology. 2014;42:174–83.

Article  PubMed  Google Scholar 

Coutinho P, Ruano L, Loureiro JL, Cruz VT, Barros J, Tuna A, et al. Hereditary ataxia and spastic paraplegia in Portugal: A population-based prevalence study. JAMA Neurol. 2013;70:746–55.

Article  PubMed  Google Scholar 

Matilla-Dueñas A, Ashizawa T, Brice A, Magri S, McFarland KN, Pandolfo M, et al. Consensus paper: pathological mechanisms underlying neurodegeneration in spinocerebellar ataxias. Cerebellum. 2014;13:269–302.

Article  PubMed  PubMed Central  Google Scholar 

Eidhof I, Van De Warrenburg BP, Schenck A. Integrative network and brain expression analysis reveals mechanistic modules in ataxia. J Med Genet. 2019;56:283–92.

Article  CAS  PubMed  Google Scholar 

Robinson KJ, Watchon M, Laird AS. Aberrant Cerebellar Circuitry in the Spinocerebellar Ataxias. Front Neurosci. 2020;14:1–27.

Article  Google Scholar 

Bauer P, Stevanin G, Beetz C, Synofzik M, Schmitz-Hübsch T, Wüllner U, et al. Spinocerebellar ataxia type 11 (SCA11) is an uncommon cause of dominant ataxia among French and German kindreds. J Neurol Neurosurg Psychiatry. 2010;81:1229–32.

Article  PubMed  Google Scholar 

Houlden H, Johnson J, Gardner-Thorpe C, Lashley T, Hernandez D, Worth P, et al. Mutations in TTBK2, encoding a kinase implicated in tau phosphorylation, segregate with spinocerebellar ataxia type 11. Nat Genet. 2007;39:1434–6.

Article  CAS  PubMed  Google Scholar 

Worth PF, Giunti P, Gardner-Thorpe C, Dixon PH, Davis MB, Wood NW. Autosomal dominant cerebellar ataxia type III: Linkage in a large british family to a 7.6-cM region on chromosome 15.q14–21.3. Am J Hum Genet. 1999;65:420–6.

Lindquist SG, Møller LB, Dali CI, Marner L, Kamsteeg EJ, Nielsen JE, et al. A Novel TTBK2 De Novo Mutation in a Danish Family with Early-Onset Spinocerebellar Ataxia. Cerebellum. 2017;16:268–71.

Article  CAS  PubMed  Google Scholar 

Németh AH, Kwasniewska AC, Lise S, Parolin Schnekenberg R, Becker EBE, Bera KD, et al. Next generation sequencing for molecular diagnosis of neurological disorders using ataxias as a model. Brain. 2013;136:3106–18.

Article  PubMed  PubMed Central  Google Scholar 

Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, et al. Efficacy of exome-targeted capture sequencing to detect mutations in known cerebellar ataxia genes. JAMA Neurol. 2018;75:591–9.

Article  PubMed  PubMed Central  Google Scholar 

Deng Y, Fu J, Zhong YQ, Zhang M, Qi X. First finding of familial spinal cerebellar Ataxia11 in China: clinical, imaging and genetic features. Neurol Sci. 2020;41:155–60.

Article  PubMed  Google Scholar 

Galatolo D, De Michele G, Silvestri G, Leuzzi V, Casali C, Musumeci O, et al. NGS in Hereditary Ataxia: When Rare Becomes Frequent. Int J Mol Sci. 2021;22:8490.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Edener U, Kurth I, Meiner A, Hoffmann F, Hübner CA, Bernard V, et al. Missense exchanges in the TTBK2 gene mutated in SCA11. J Neurol. 2009;256:1856–9.

Article  CAS  PubMed  Google Scholar 

Jiao Q, Sun H, Zhang H, Wang R, Li S, Sun D, et al. The combination of whole-exome sequencing and copy number variation sequencing enables the diagnosis of rare neurological disorders. Clin Genet. 2019;96:140–50.

Article  CAS  PubMed  Google Scholar 

Iqbal Z, Rydning SL, Wedding IM, Koht J, Pihlstrøm L, Rengmark AH, et al. Targeted high throughput sequencing in hereditary ataxia and spastic paraplegia. Brusgaard K, editor. PLoS One. 2017;12:e0174667.

Fakhro KA, Robay A, Rodrigues-Flores JL, Mezey JG, Al-Shakaki AA, Chidiac O, et al. Point of Care Exome Sequencing Reveals Allelic and Phenotypic Heterogeneity Underlying Mendelian disease in Qatar. Hum Mol Genet. 2019;28:3970–81.

CAS  PubMed  Google Scholar 

Choi K-D, Kim J-S, Kim H-J, Jung I, Jeong S-H, Lee S-H, et al. Genetic Variants Associated with Episodic Ataxia in Korea. Sci Rep. 2017;7:13855.

Article  PubMed  PubMed Central  Google Scholar 

Coutelier M, Coarelli G, Monin M-L, Konop J, Davoine C-S, Tesson C, et al. A panel study on patients with dominant cerebellar ataxia highlights the frequency of channelopathies. Brain. 2017;140:1579–94.

Article  PubMed  Google Scholar 

Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science (80- ). 2002;298:1912–34.

Ikezu S, Ikezu T. Tau-tubulin kinase. Front Mol Neurosci. 2014;7.

Jiang K, Toedt G, Montenegro Gouveia S, Davey NE, Hua S, van der Vaart B, et al. A Proteome-wide Screen for Mammalian SxIP Motif-Containing Microtubule Plus-End Tracking Proteins. Curr Biol. 2012;22:1800–7.

Article  CAS  PubMed  Google Scholar 

Watanabe T, Kakeno M, Matsui T, Sugiyama I, Arimura N, Matsuzawa K, et al. TTBK2 with EB1/3 regulates microtubule dynamics in migrating cells through KIF2A phosphorylation. J Cell Biol. 2015;210:737–51.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bouskila M, Esoof N, Gay L, Fang EH, Deak M, Begley MJ, et al. TTBK2 kinase substrate specificity and the impact of spinocerebellar- ataxia-causing mutations on expression, activity, localization and development. Biochem J. 2011;437:157–67.

Article  CAS  PubMed  Google Scholar 

Takahashi M, Tomizawa K, Ishiguro K, Takamatsu M, Fujita SC, Imahori K. Involvement of τ Protein Kinase I in Paired Helical Filament-Like Phosphorylation of the Juvenile τ in Rat Brain. J Neurochem. 1995;64:1759–68.

Article  CAS  PubMed  Google Scholar 

Tomizawa K, Omori A, Ohtake A, Sato K, Takahashi M. Tau-tubulin kinase phosphorylates tau at Ser-208 and Ser-210, sites found in paired helical filament-tau. FEBS Lett. 2001;492:221–7.

Article  CAS  PubMed  Google Scholar 

Goetz SC, Liem KF, Anderson KV. The spinocerebellar ataxia-associated gene tau tubulin kinase 2 controls the initiation of ciliogenesis. Cell. 2012;151:847–58.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Almilaji A, Munoz C, Hosseinzadeh Z, Lang F. Upregulation of Na, Cl - -coupled betaine/γ-amino-butyric acid transporter BGT1 by tau tubulin kinase 2. Cell Physiol Biochem. 2013;32:334–43.

Article  CAS  PubMed  Google Scholar 

Alesutan I, Sopjani M, Dërmaku-Sopjani M, Munoz C, Voelkl J, Lang F. Upregulation of Na + -coupled Glucose transporter SGLT1 by Tau Tubulin Kinase 2. Cell Physiol Biochem. 2012;30:458–65.

Article  CAS  PubMed  Google Scholar 

Nieding K, Matschke V, Meuth SG, Lang F, Seebohm G, Strutz-Seebohm N. Tau Tubulin Kinase TTBK2 Sensitivity of Glutamate Receptor GluK2. Cell Physiol Biochem. 2016;39:1444–52.

Article  CAS  PubMed  Google Scholar 

Liachko NF, McMillan PJ, Strovas TJ, Loomis E, Greenup L, Murrell JR, et al. The Tau Tubulin Kinases TTBK1/2 Promote Accumulation of Pathological TDP-43. PLoS Genet. 2014;10.

Qi H, Yao C, Cai W, Girton J, Johansen KM, Johansen J. Asator, a tau-tubulin kinase homolog in Drosophila localizes to the mitotic spindle. Dev Dyn. 2009;238:3248–56.

Article 

留言 (0)

沒有登入
gif