The complexity of human papilloma virus in cancers: a narrative review

Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2021;71(3):209–49.

Article  PubMed  Google Scholar 

de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health. 2020;8(2):e180–90.

Article  PubMed  Google Scholar 

Liao JB. Viruses and human cancer. Yale J Biol Med. 2006;79(3–4):115–22.

CAS  PubMed  Google Scholar 

Silva Dalla Libera L, Almeida de Carvalho KP, Enocencio Porto Ramos J, Oliveira Cabral LA, de Cassia Goncalves de Alencar R, Villa LL, et al. Human papillomavirus and anal cancer: prevalence, genotype distribution, and prognosis aspects from Midwestern Regiosn of Brazil. J Oncol. 2019;2019:e6018269.

Cohen PA, Jhingran A, Oaknin A, Denny L. Cervical cancer. Lancet. 2019;393(10167):169–82.

Article  PubMed  Google Scholar 

Pešut E, Đukić A, Lulić L, Skelin J, Šimić I, Milutin Gašperov N, et al. Human papillomaviruses-associated cancers: an update of current knowledge. Viruses. 2021;13(11):2234.

Article  PubMed  PubMed Central  Google Scholar 

Rajendra K, Sharma P. Viral pathogens in oesophageal and gastric cancer. Pathogens. 2022;11(4):476.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bergvall M, Melendy T, Archambault J. The E1 proteins. Virology. 2013;445(1–2):35–56.

Article  CAS  PubMed  Google Scholar 

Van Doorslaer K, McBride AA. Molecular archeological evidence in support of the repeated loss of a papillomavirus gene. Sci Rep. 2016;6(1):33028.

Article  PubMed  PubMed Central  Google Scholar 

Pinidis P, Tsikouras P, Iatrakis G, Zervoudis S, Koukouli Z, Bothou A, et al. Human papilloma virus’ life cycle and carcinogenesis. Maedica (Bucur). 2016;11(1):48–54.

PubMed  Google Scholar 

Egawa N, Egawa K, Griffin H, Doorbar J. Human papillomaviruses; epithelial tropisms, and the development of neoplasia. Viruses. 2015;7(7):3863–90.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Albert E, Laimins L. Regulation of the human papillomavirus life cycle by DNA damage repair pathways and epigenetic factors. Viruses. 2020;12(7):744.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Korzeniewski N, Treat B, Duensing S. The HPV-16 E7 oncoprotein induces centriole multiplication through deregulation of Polo-like kinase 4 expression. Mol Cancer. 2011;10(1):61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martinez-Zapien D, Ruiz FX, Poirson J, Mitschler A, Ramirez J, Forster A, et al. Structure of the E6/E6AP/p53 complex required for HPV-mediated degradation of p53. Nature. 2016;529(7587):541–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Li S, Hong X, Wei Z, Xie M, Li W, Liu G, et al. Ubiquitination of the HPV oncoprotein E6 is critical for E6/E6AP-mediated p53 degradation. Front Microbiol. 2019;10:2483.

Article  PubMed  PubMed Central  Google Scholar 

Xie X, Piao L, Bullock BN, Smith A, Su T, Zhang M, et al. Targeting HPV16 E6–p300 interaction reactivates p53 and inhibits the tumorigenicity of HPV-positive head and neck squamous cell carcinoma. Oncogene. 2014;33(8):1037–46.

Article  CAS  PubMed  Google Scholar 

Martire S, Nguyen J, Sundaresan A, Banaszynski LA. Differential contribution of p300 and CBP to regulatory element acetylation in mESCs. BMC Mol Cell Biol. 2020;21(1):55.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Genera M, Samson D, Raynal B, Haouz A, Baron B, Simenel C, et al. Structural and functional characterization of the PDZ domain of the human phosphatase PTPN3 and its interaction with the human papillomavirus E6 oncoprotein. Sci Rep. 2019;9(1):7438.

Article  PubMed  PubMed Central  Google Scholar 

Thatte J, Massimi P, Thomas M, Boon SS, Banks L. The human papillomavirus E6 PDZ binding motif links DNA damage response signaling to E6 inhibition of p53 transcriptional activity. J Virol. 2018;92(16):e00465-e518.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Vliet-Gregg PA, Hamilton JR, Katzenellenbogen RA. NFX1-123 and human papillomavirus 16E6 increase Notch expression in keratinocytes. J Virol. 2013;87(24):13741–50.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Levan J, Vliet-Gregg PA, Robinson KL, Matsumoto LR, Katzenellenbogen RA. HPV type 16 E6 and NFX1-123 augment JNK signaling to mediate keratinocyte differentiation and L1 expression. Virology. 2019;531:171–82.

Article  CAS  PubMed  Google Scholar 

Hollomon MG, Patterson L, Santiago-O’Farrill J, Kleinerman ES, Gordon N. Knock down of Fas-associated protein with death domain (FADD) sensitizes osteosarcoma to TNFα-induced cell death. J Cancer. 2020;11(7):1657–67.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Tavakolian S, Goudarzi H, Eslami G, Dayyani F, Kazeminezhad B, Faghihloo E. Prevalence of human papilloma virus and Epstein-Barr virus in tumorous and adjacent tissues of colorectal cancer in Iran. Gene Reports. 2020;20: 100774.

Article  CAS  Google Scholar 

Pal A, Kundu R. Human papillomavirus E6 and E7: the cervical cancer hallmarks and targets for therapy. Front Microbiol. 2019;10:3116.

Article  PubMed  Google Scholar 

Duensing S, Münger K. Human papillomavirus type 16 E7 oncoprotein can induce abnormal centrosome duplication through a mechanism independent of inactivation of retinoblastoma protein family members. J Virol. 2003;77(22):12331–5.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Luan Y, Li M, Zhao Y, Li Q, Wen J, Gao S, et al. Centrosomal-associated Proteins: potential therapeutic targets for solid tumors? Biomed Pharmacother. 2021;1(144): 112292.

Article  Google Scholar 

Iancu IV, Botezatu A, Goia-Ruşanu CD, Stănescu A, Huică I, Nistor E, et al. TGF-beta signalling pathway factors in HPV-induced cervical lesions. Roum Arch Microbiol Immunol. 2010;69(3):113–8.

CAS  PubMed  Google Scholar 

McBride AA. The papillomavirus E2 proteins. Virology. 2013;445(1–2):57–79.

Article  CAS  PubMed  Google Scholar 

Yablonska S, Hoskins EE, Wells SI, Khan SA. Identification of miRNAs dysregulated in human foreskin keratinocytes (HFKs) expressing the human papillomavirus (HPV) type 16 E6 and E7 oncoproteins. MIRNA. 2013;2(1):2–13.

Article  CAS  Google Scholar 

Levan J, Vliet-Gregg PA, Robinson KL, Katzenellenbogen RA. Human papillomavirus type 16 E6 and NFX1-123 mislocalize immune signaling proteins and downregulate immune gene expression in keratinocytes. PLoS ONE. 2017;12(11): e0187514.

Article  PubMed  PubMed Central  Google Scholar 

Tavakolian S, Goudarzi H, Faghihloo E. Cyclin-dependent kinases and CDK inhibitors in virus-associated cancers. Infect Agents Cancer. 2020;15(1):27.

Article  CAS  Google Scholar 

Xi Y, Xu P. Global colorectal cancer burden in 2020 and projections to 2040. Transl Oncol. 2021;14(10): 101174.

Article  PubMed  PubMed Central  Google Scholar 

Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer. 2015;136(5):E359-386.

Article  CAS  PubMed  Google Scholar 

Baandrup L, Thomsen LT, Olesen TB, Andersen KK, Norrild B, Kjaer SK. The prevalence of human papillomavirus in colorectal adenomas and adenocarcinomas: a systematic review and meta-analysis. E J C. 2014;50(8):1446–61.

Article  CAS  Google Scholar 

Santos. The human papillomavirus in colorectal cancer [Internet]. [cited 2023 Jan 2]. Available from: https://www.jmedscindmc.com/article.asp?issn=1011-4564;year=2022;volume=42;issue=1;spage=1;epage=7;aulast=Santos

Zhang L, Shay JW. Multiple roles of APC and its therapeutic implications in colorectal cancer. J Natl Cancer Inst. 2017;109(8):djw332.

Article  PubMed  PubMed Central  Google Scholar 

Chen K, Jiao X, Ashton A, Di Rocco A, Pestell TG, Sun Y, et al. The membrane-associated form of cyclin D1 enhances cellular invasion. Oncogenesis. 2020;9(9):83.

Article  PubMed  PubMed Central  Google Scholar 

Fu M, Wang C, Li Z, Sakamaki T, Pestell RG. Minireview: Cyclin D1: normal and abnormal functions. Endocrinology. 2004;145(12):5439–47.

Article  CAS  PubMed  Google Scholar 

Park S, Cui J, Yu W, Wu L, Carmon KS, Liu QJ. Differential activities and mechanisms of the four R-spondins in potentiating Wnt/β-catenin signaling. J Biol Chem. 2018;293(25):9759–69.

留言 (0)

沒有登入
gif