STAM and Hrs interact sequentially with IFN-α Receptor to control spatiotemporal JAK–STAT endosomal activation

O’Shea, J. J. et al. The JAK–STAT pathway: impact on human disease and therapeutic intervention. Ann. Rev. Med 66, 311–328 (2015).

Article  PubMed  Google Scholar 

Villarino, A. V., Kanno, Y. & O’Shea, J. J. Mechanisms and consequences of Jak–STAT signaling in the immune system. Nat. Immunol. 18, 374–384 (2017).

Article  CAS  PubMed  Google Scholar 

Lochte, S., Waichman, S., Beutel, O., You, C. & Piehler, J. Live cell micropatterning reveals the dynamics of signaling complexes at the plasma membrane. J. Cell Biol. 207, 407–418 (2014).

Article  PubMed  PubMed Central  Google Scholar 

Platanias, L. C. Mechanisms of type-I- and type-II-interferon-mediated signalling. Nat. Rev. Immunol. 5, 375–386 (2005).

Article  CAS  PubMed  Google Scholar 

Thomas, C. et al. Structural linkage between ligand discrimination and receptor activation by type I interferons. Cell 146, 621–632 (2011).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ivashkiv, L. B. & Donlin, L. T. Regulation of type I interferon responses. Nat. Rev. Immunol. 14, 36–49 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Fox, L. E., Locke, M. C. & Lenschow, D. J. Context is key: delineating the unique functions of IFNα and IFNβ in disease. Front. Immunol. 11, 606874 (2020).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Jaitin, D. A. et al. Inquiring into the differential action of interferons (IFNs): an IFN-α2 mutant with enhanced affinity to IFNAR1 is functionally similar to IFN-β. Mol. Cell. Biol. 26, 1888–1897 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

de Weerd, N. A. et al. Structural basis of a unique interferon-β signaling axis mediated via the receptor IFNAR1. Nat. Immunol. 14, 901–907 (2013).

Article  PubMed  Google Scholar 

Schreiber, G. & Piehler, J. The molecular basis for functional plasticity in type I interferon signaling. Trends Immunol. 36, 139–149 (2015).

Article  CAS  PubMed  Google Scholar 

Marchetti, M. et al. Stat-mediated signaling induced by type I and type II interferons (IFNs) is differentially controlled through lipid microdomain association and clathrin-dependent endocytosis of IFN receptors. Mol. Biol. Cell 17, 2896–2909 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gonnord, P., Blouin, C. M. & Lamaze, C. Membrane trafficking and signaling: two sides of the same coin. Semin. Cell Dev. Biol. 23, 154–164 (2012).

Article  CAS  PubMed  Google Scholar 

Zanin, N., de Lesegno, C. V., Lamaze, C. & Blouin, C.M. Interferon receptor trafficking and signaling: journey to the cross roads. Front. Immunol. 11, 615603 (2021).

Vieira, A. V., Lamaze, C. & Schmid, S. L. Control of EGF receptor signaling by clathrin-mediated endocytosis. Science 274, 2086–2089 (1996).

Article  CAS  PubMed  Google Scholar 

Di Fiore, P.P. & von Zastrow, M. Endocytosis, signaling, and beyond. Cold Spring Harb. Perspect. Biol. 6, a016865 (2014).

Irannejad, R., Tsvetanova, N. G., Lobingier, B. T. & von Zastrow, M. Effects of endocytosis on receptor-mediated signaling. Curr. Opin. Cell Biol. 35, 137–143 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Villasenor, R., Kalaidzidis, Y. & Zerial, M. Signal processing by the endosomal system. Curr. Opin. Cell Biol. 39, 53–60 (2016).

Article  CAS  PubMed  Google Scholar 

Asao, H. et al. Hrs is associated with STAM, a signal-transducing adaptor molecule. Its suppressive effect on cytokine-induced cell growth. J. Biol. Chem. 272, 32785–32791 (1997).

Article  CAS  PubMed  Google Scholar 

Bache, K. G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

Article  CAS  PubMed  Google Scholar 

Mayers, J. R. et al. ESCRT-0 assembles as a heterotetrameric complex on membranes and binds multiple ubiquitinylated cargoes simultaneously. J. Biol. Chem. 286, 9636–9645 (2011).

Article  CAS  PubMed  Google Scholar 

Migliano, S. M., Wenzel, E. M. & Stenmark, H. Biophysical and molecular mechanisms of ESCRT functions, and their implications for disease. Curr. Opin. Cell Biol. 75, 102062 (2022).

Article  CAS  PubMed  Google Scholar 

Lohi, O. & Lehto, V. P. STAM/EAST/Hbp adapter proteins—integrators of signalling pathways. FEBS Lett. 508, 287–290 (2001).

Article  CAS  PubMed  Google Scholar 

Raiborg, C. et al. FYVE and coiled-coil domains determine the specific localisation of Hrs to early endosomes. J. Cell Sci. 114, 2255–2263 (2001).

Article  CAS  PubMed  Google Scholar 

Row, P. E., Clague, M. J. & Urbe, S. Growth factors induce differential phosphorylation profiles of the Hrs–STAM complex: a common node in signalling networks with signal-specific properties. Biochem. J. 389, 629–636 (2005).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urbe, S., Mills, I. G., Stenmark, H., Kitamura, N. & Clague, M. J. Endosomal localization and receptor dynamics determine tyrosine phosphorylation of hepatocyte growth factor-regulated tyrosine kinase substrate. Mol. Cell. Biol. 20, 7685–7692 (2000).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Urbe, S. et al. The UIM domain of Hrs couples receptor sorting to vesicle formation. J. Cell Sci. 116, 4169–4179 (2003).

Article  CAS  PubMed  Google Scholar 

Wegner, C. S. et al. Ultrastructural characterization of giant endosomes induced by GTPase-deficient Rab5. Histochem. Cell Biol. 133, 41–55 (2010).

Article  CAS  PubMed  Google Scholar 

Bache, K. G., Raiborg, C., Mehlum, A., Madshus, I. H. & Stenmark, H. Phosphorylation of Hrs downstream of the epidermal growth factor receptor. Eur. J. Biochem. 269, 3881–3887 (2002).

Article  CAS  PubMed  Google Scholar 

Komada, M. & Kitamura, N. Growth factor-induced tyrosine phosphorylation of Hrs, a novel 115-kilodalton protein with a structurally conserved putative zinc finger domain. Mol. Cell. Biol. 15, 6213–6221 (1995).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bache, K. G., Brech, A., Mehlum, A. & Stenmark, H. Hrs regulates multivesicular body formation via ESCRT recruitment to endosomes. J. Cell Biol. 162, 435–442 (2003).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Prag, G. et al. The Vps27/Hse1 complex is a GAT domain-based scaffold for ubiquitin-dependent sorting. Dev. Cell 12, 973–986 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, K. G. et al. Site-specific ubiquitination exposes a linear motif to promote interferon-α receptor endocytosis. J. Cell Biol. 179, 935–950 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Marijanovic, Z., Ragimbeau, J., Kumar, K. G., Fuchs, S. Y. & Pellegrini, S. TYK2 activity promotes ligand-induced IFNAR1 proteolysis. Biochem. J. 397, 31–38 (2006).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kumar, K. G. et al. SCF(HOS) ubiquitin ligase mediates the ligand-induced down-regulation of the interferon-α receptor. EMBO J. 22, 5480–5490 (2003).

Article  CAS  PubMed  Google Scholar 

Marijanovic, Z., Ragimbeau, J., van der Heyden, J., Uze, G. & Pellegrini, S. Comparable potency of IFNα2 and IFNβ on immediate JAK/STAT activation but differential down-regulation of IFNAR2. Biochem. J. 407, 141–151 (2007).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Umebayashi, K., Stenmark, H. & Yoshimori, T. Ubc4/5 and c-Cbl continue to ubiquitinate EGF receptor after internalization to facilitate polyubiquitination and degradation. Mol. Biol. Cell 19, 3454–3462 (2008).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Endo, K. et al. STAM2, a new member of the STAM family, binding to the Janus kinases. FEBS Lett. 477, 55–61 (2000).

Article  CAS  PubMed 

留言 (0)

沒有登入
gif