Function of TRPC1 in modulating hepatocellular carcinoma progression

Duitama M, et al. TRP Channels as molecular targets to relieve cancer pain. Biomolecules. 2021. https://doi.org/10.3390/biom12010001.

Article  PubMed  PubMed Central  Google Scholar 

Hasan R, Zhang X. Ca(2+) regulation of TRP ion channels. Int J Mol Sci. 2018. https://doi.org/10.3390/ijms19041256.

Article  PubMed  PubMed Central  Google Scholar 

Nilius B, Owsianik G, Voets T, Peters JA. Transient receptor potential cation channels in disease. Physiol Rev. 2007;87:165–217. https://doi.org/10.1152/physrev.00021.2006.

Article  CAS  PubMed  Google Scholar 

Cui C, Merritt R, Fu L, Pan Z. Targeting calcium signaling in cancer therapy. Acta pharm Sin B. 2017;7:3–17. https://doi.org/10.1016/j.apsb.2016.11.001.

Article  PubMed  Google Scholar 

Zhong T, et al. The regulatory and modulatory roles of TRP family channels in malignant tumors and relevant therapeutic strategies. Acta Pharm Sin B. 2022;12:1761–80. https://doi.org/10.1016/j.apsb.2021.11.001.

Article  CAS  PubMed  Google Scholar 

Kollewe A, et al. Subunit composition, molecular environment, and activation of native TRPC channels encoded by their interactomes. Neuron. 2022;110:4162-4175.e4167. https://doi.org/10.1016/j.neuron.2022.09.029.

Article  CAS  PubMed  Google Scholar 

Wang H, et al. TRPC channels: structure, function, regulation and recent advances in small molecular probes. Pharmacol Ther. 2020;209:107497. https://doi.org/10.1016/j.pharmthera.2020.107497.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Bai CX, et al. Formation of a new receptor-operated channel by heteromeric assembly of TRPP2 and TRPC1 subunits. EMBO Rep. 2008;9:472–9. https://doi.org/10.1038/embor.2008.29.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ma X, et al. Depletion of intracellular Ca2+ stores stimulates the translocation of vanilloid transient receptor potential 4–c1 heteromeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol. 2010;30:2249–55. https://doi.org/10.1161/atvbaha.110.212084.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cuddapah VA, Turner KL, Sontheimer H. Calcium entry via TRPC1 channels activates chloride currents in human glioma cells. Cell Calcium. 2013;53:187–94. https://doi.org/10.1016/j.ceca.2012.11.013.

Article  CAS  PubMed  Google Scholar 

Sobradillo D, et al. A reciprocal shift in transient receptor potential channel 1 (TRPC1) and stromal interaction molecule 2 (STIM2) contributes to Ca2+ remodeling and cancer hallmarks in colorectal carcinoma cells. J Biol Chem. 2014;289:28765–82. https://doi.org/10.1074/jbc.M114.581678.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Radoslavova S, et al. TRPC1 channels regulate the activation of pancreatic stellate cells through ERK1/2 and SMAD2 pathways and perpetuate their pressure-mediated activation. Cell Calcium. 2022;106:102621. https://doi.org/10.1016/j.ceca.2022.102621.

Article  CAS  PubMed  Google Scholar 

Wan H, et al. NCX1 coupled with TRPC1 to promote gastric cancer via Ca(2+)/AKT/β-catenin pathway. Oncogene. 2022;41:4169–82. https://doi.org/10.1038/s41388-022-02412-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zhang LY, et al. TRPC1 inhibits the proliferation and migration of estrogen receptor-positive Breast cancer and gives a better prognosis by inhibiting the PI3K/AKT pathway. Breast Cancer Res Treat. 2020;182:21–33. https://doi.org/10.1007/s10549-020-05673-8.

Article  CAS  PubMed  Google Scholar 

Nio K, Yamashita T, Kaneko S. The evolving concept of liver cancer stem cells. Mol Cancer. 2017;16:4. https://doi.org/10.1186/s12943-016-0572-9.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Forner A, Reig M, Bruix J. Hepatocellular carcinoma. Lancet (London, England). 2018;391:1301–14. https://doi.org/10.1016/s0140-6736(18)30010-2.

Article  PubMed  Google Scholar 

Llovet JM, et al. Hepatocellular carcinoma. Nat Rev Dis Primers. 2021;7:6. https://doi.org/10.1038/s41572-020-00240-3.

Article  PubMed  Google Scholar 

Zhang Z, et al. A survey and evaluation of Web-based tools/databases for variant analysis of TCGA data. Brief Bioinform. 2019;20:1524–41. https://doi.org/10.1093/bib/bby023.

Article  CAS  PubMed  Google Scholar 

Gao J, et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci signal. 2013;6:pl1. https://doi.org/10.1126/scisignal.2004088.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Cerami E, et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2012;2:401–4. https://doi.org/10.1158/2159-8290.Cd-12-0095.

Article  PubMed  Google Scholar 

Tang Z, et al. GEPIA: a web server for cancer and normal gene expression profiling and interactive analyses. Nucleic Acids Res. 2017;45:W98-w102. https://doi.org/10.1093/nar/gkx247.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wei J, et al. Characterization of glycolysis-associated molecules in the tumor microenvironment revealed by pan-cancer tissues and lung cancer single cell data. Cancers (Basel). 2020. https://doi.org/10.3390/cancers12071788.

Article  PubMed  PubMed Central  Google Scholar 

Hänzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for microarray and RNA-seq data. BMC Bioinformatics. 2013;14:7. https://doi.org/10.1186/1471-2105-14-7.

Article  PubMed  PubMed Central  Google Scholar 

Sterea AM, Egom EE, El Hiani Y. TRP channels in gastric cancer: New hopes and clinical perspectives. Cell Calcium. 2019;82:102053. https://doi.org/10.1016/j.ceca.2019.06.007.

Article  CAS  PubMed  Google Scholar 

Büch TRH, Büch EAM, Boekhoff I, Steinritz D, Aigner A. Role of chemosensory TRP channels in lung cancer. Pharmaceuticals (Basel, Switzerland). 2018. https://doi.org/10.3390/ph11040090.

Article  PubMed  Google Scholar 

Saldías MP, et al. TRP channels interactome as a novel therapeutic target in breast cancer. Front oncol. 2021;11:621614. https://doi.org/10.3389/fonc.2021.621614.

Article  PubMed  PubMed Central  Google Scholar 

Elzamzamy OM, Penner R, Hazlehurst LA. The role of TRPC1 in modulating cancer progression. Cells. 2020. https://doi.org/10.3390/cells9020388.

Article  PubMed  PubMed Central  Google Scholar 

Lai GY, et al. Association of serum α-tocopherol, β-carotene, and retinol with liver cancer incidence and chronic liver disease mortality. Br J Cancer. 2014;111:2163–71. https://doi.org/10.1038/bjc.2014.365.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Nguyen TN, Nguyen HQ, Le DH. Unveiling prognostics biomarkers of tyrosine metabolism reprogramming in liver cancer by cross-platform gene expression analyses. PLoS One. 2020;15:e0229276. https://doi.org/10.1371/journal.pone.0229276.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Chen J, et al. ABI2-mediated MEOX2/KLF4-NANOG axis promotes liver cancer stem cell and drives tumour recurrence. Liver Int : Official J Int Assoc Study Liver. 2022;42:2562–76. https://doi.org/10.1111/liv.15412.

Article  CAS  Google Scholar 

Liang XH, et al. MAPRE1 promotes cell cycle progression of hepatocellular carcinoma cells by interacting with CDK2. Cell Biol Int. 2020;44:2326–33. https://doi.org/10.1002/cbin.11442.

Article  CAS  PubMed  Google Scholar 

Zeng Z, Lei S, He Z, Chen T, Jiang J. YEATS2 is a target of HIF1α and promotes pancreatic cancer cell proliferation and migration. J Cell Physiol. 2021;236:2087–98. https://doi.org/10.1002/jcp.29995.

Article  CAS  PubMed  Google Scholar 

Jiao T, et al. MTA3 regulates malignant progression of colorectal cancer through Wnt signaling pathway. Tumour Biol. 2017;39:1010428317695027. https://doi.org/10.1177/1010428317695027.

Article  CAS  PubMed  Google Scholar 

Du L, et al. MTA3 represses cancer stemness by targeting the SOX2OT/SOX2 axis. IScience. 2019;22:353–68. https://doi.org/10.1016/j.isci.2019.11.009.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang C, et al. Overexpression of the metastasis-associated gene MTA3 correlates with tumor progression and poor prognosis in hepatocellular carcinoma. J Gastroenterol Hepatol. 2017;32:1525–9. https://doi.org/10.1111/jgh.13680.

Article  CAS  PubMed  Google Scholar 

Walline HM, et al. Integration of high-risk human papillomavirus into cellular cancer-related genes in head and neck cancer cell lines. Head Neck. 2017;39:840–52. https://doi.org/10.1002/hed.24729.

Article  PubMed 

留言 (0)

沒有登入
gif