Lunk HJ, Hartl H (2017) Discovery, properties and applications of molybdenum and its compounds. ChemTexts 3:13. https://doi.org/10.1007/s40828-017-0048-6
Lunk HJ, Hartl H (2019) Discovery, properties and applications of tungsten and its inorganic compounds. ChemTexts 5:15. https://doi.org/10.1007/s40828-019-0088-1
Berkowitz J, lnghram MG, Chupka WA (1957) Polymeric gaseous species in the sublimation of molybdenum trioxide. J Chem Phys 26:842–845
Kihlborg L (1963) Least squares refinement of the crystal structure of molybdenum trioxide. Arkiv Kemi 21:357–364
McCarron EM III (1986) β-MoO3: a metastable analogue of WO3. J Chem Soc Chem Commun 1986:336–338
Parise JB, McCarron EM III, Von Dreele R, Goldstone JA (1991) β-MoO3 produced from a novel freeze drying route. J Solid State Chem 93:193–201
Sayede AD, Amriou T, Pernisek M, Khelifa B, Mathieu C (2005) An ab initio LAPW study of the [alpha] and [beta] phases of bulk molybdenum trioxide, MoO3. Chem Phys 316:72–82
Parise JB, McCarron EM III, Sleight AW (1987) A new modification of ReO3-type MoO3 and the deuterated intercalation compound from which it is derived: D0.99MoO3. Mater Res Bull 22:803–811
McCarron EM III, Calabrese JC (1991) The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II. J Solid State Chem 91:121–125
Lunk HJ, Hartl H, Hartl MA, Fait MJG, Shenderovich IG, Feist M, Frisk TA, Daemen LL, Mauder D, Eckelt R, Gurinov AA (2010) “Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveries. Inorg Chem 49:9400–9408
Guo J, Zavalij P, Whittingham MS (1994) Preparation and characterization of a MoO3 with hexagonal structure. Eur J Solid State Inorg Chem 31:833–842
Schäfer H, Grofe T, Trenkel M (1973) The chemical transport of molybdenum and tungsten and of their dioxides and sulfides. J Solid State Chem 8:14–28
McCarroll WH, Ramanujachary (2011) Oxides: solid-state chemistry. https://doi.org/10.1002/9781119951438.eibc0161
Robin M, Day P (1968) Mixed-valence chemistry: a survey and classification. Adv Inorg Chem Radiochem 10:247–422
Chang LLY, Phillips B (1969) Phase relations in refractory metal-oxygen systems. J Am Ceram Soc: 527–533
Greenblatt M (1988) Molybdenum oxide bronzes with quasi-low-dimensional properties. Chem Rev 88:31–53
Canadell E, Whangbo MH (1988) Semiconducting properties of lithium molybdate, Li0.33 MoO3. Inorg Chem 27:228–232
Magnéli A (1948) The crystal structure of Mo4O11 (γ-molybdenum oxide). Acta Chem Scand 2:861–871
Schlenker C, Dumas J, Escribe-Filippini C, Guyot H, Marcus J, Fourcaudot C (1985) Charge-density-wave instabilities in the low-dimensional molybdenum bronzes and oxides. Philos Mag 52B:643–667
Sato M, Fujishita H, Sato S, Hoshino S (1986) Structural transitions in Mo8O23. J Phys C 19:3059–3067
Ganne M, Boumaza A, Dion M, Dumas J (1985) The blue bronze Tl0.30MoO3 structure and physical properties. J Mater Res Bull 20:1297–1308
Whangbo MH, Canadell E (1988) Band electronic structure of the lithium molybdenum purple bronze Li0.9Mo6O17. J Am Chem Soc 110:358–363
Collins BT, Greenblatt M, McCarroll WH, Hull GW (1988) Quasi-one-dimensionality in the new bronze-like compound La2Mo2O7. J Solid State Chem 73:507–513
Wadsley AD (1967). In: Mandelcorn L (ed.) Non-stoichiometric compounds. Academic Press, New York, pp 98–209
Canadell E, Whangbo MH (1991) Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem Rev 91:965–1034
Sahle W (1983) Electron microscopy studies of tungsten oxides in the range WO3–WO2.72. Phase relations, defect structures, structural transformations and electrical conductivity. Chem Commun Univ Stockholm 4:1–53
Gebert E, Ackermann RJ (1966) Substoichiometry of tungsten trioxide; the crystal systems of WO3.00, WO2.98, and WO2.96. Inorg Chem 5:136–142
Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. J Appl Phys 108:093713-1–093713-7
Vogt T, Woodward PM, Hunter BA (1999) The high-temperature phases of WO3. J Solid State Chem 144:209–215
Gerand G, Novogorocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29:429–434
Balázsi C, Farkas-Jahnke M, Kotsis I, Petrás L, Pfeifer J (2001) The observation of cubic tungsten trioxide at high-temperature dehydration of tungsten acid hydrate. Solid State Ionics 141–142:411–416
Szilágyi IM, Wang L, Gouma PI, Balázsi C, Madarász J, Pokol G (2009) Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater Res Bull 44:505–508
Trasorras JRL, Wolfe TA, Knabl W, Venezia C, Lemus R, Lassner E, Schubert WD, Lüderitz E, Wolf HU (2016) Tungsten, tungsten alloys, and tungsten compounds. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 1–53
Schmidt P, Binnewies M, Glaum R, Schmidt M (2013) Chemical vapor transport reactions methods, materials, modeling. In: INTECH open science/open minds. https://doi.org/10.5772/55547. (Chapter 9:227–305)
Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 108:093714-1–093714-6
Wöhler F (1824) Ueber das Wolfram (About tungsten). Ann Physik [in German] 78:345–358
Dickens PG, Whittingham MS (1968) The tungsten bronzes and related compounds. Rev Chem Soc 22:30–44
Lunk HJ (2015) Incandescent lighting and powder metallurgical manufacturing of tungsten wire. ChemTexts 1:3. https://doi.org/10.1007/s40828-014-0003-8
Lunk HJ, Ziemer B, Salmen M, Heidemann D (1993–1994) What is behind ‘tungsten blue oxides’? Int J Refract Metals Hard Mater 12:17–26
Lunk HJ, Salmen M, Heidemann D (1998) Solid-state 1H-NMR studies of different tungsten blue oxides and related substances. Int J Refract Metals Hard Mater 16:23–30
Kim M, Park J, Kang M, Kim JY, Lee SW (2020) Toward efficient electrocatalytic oxygen evolution: emerging opportunities with metallic pyrochlore oxides for electrocatalysts and conductive supports. ACS Cent Sci 6:880–891
Lemoine K, Moury R, Duran E, Arroyo-de Dompablo E, Morán E, Leblanc M, Hémon-Ribaud A, Grenèche JM, Galven C, Gunes V, Lhoste J, Maisonneuve V (2021) First mixed-metal fluoride pyrochlores obtained by topotactic oxidation of ammonium fluorides under F2 gas. Cryst Growth Des 21:935–945
Maričić S, Smith JAS (1958) A Nuclear magnetic resonance study of the hydrates of molybdenum trioxide. J Chem Soc 1958:886–891
Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6486. https://doi.org/10.1021/ja01629a013
Schröder FA, Krebs B, Mattes R (1972) Die Schwingungsspektren von MoO3·2H2O und MoO2Cl2·H2O (Vibrational spectra of MoO3·2H2O and MoO2Cl2·H2O). Z Naturforschg [in German] 27b:22–25
Oswald HR, Günter JR, Dubler E (1975) Topotactic decomposition and crystal structure of white molybdenum trioxide-monohydrate: prediction of structure by topotaxy. J Solid State Chem 13:330–338
Krebs B (1972) Die Kristallstruktur von MoO3·2H2O (The crystal structure of MoO3·2H2O). Acta Cryst [in German] B28:2222–2231. https://doi.org/10.1107/S0567740872005849
Schwarzmann E, Glemser O (1961) Zur Bindung des Wassers in den Hydraten des Wolframtrioxids (The bonding of water in hydrates of tungsten trioxide). Z Anorg Allg Chem [in German] 312:45–49
Szymański JT, Roberts AC (1984) The crystal structure of tungstite, WO3·H2O. Canad Mineral 22:681–688
Günter JR, Amberg M, Schmalle H (1989) Direct synthesis and single crystal structure determination of cubic pyrochlore-type tungsten trioxide hydrate WO3·0.5H2O. Mat Res Bull 24:289–292
Klinbumrung A, Thongtem T, Thongtem S (2012) Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. J Nanomat. https://doi.org/10.1155/2012/930763
Song J, Ni X, Gao L, Zheng H (2007) Synthesis of metastable h-MoO3 by simple chemical precipitation. Mat Chem Phys 102:245–248
Vargas-Consuelos CI, Camacho-López M (2014) A facile method to prepare hexagonal molybdenum trioxide microrods. Superficies y Vacio 27:123–125
Song J, Ni X, Song J, Ni X, Zhang D, Zheng H (2006) Fabrication and photoluminescence properties of hexagonal MoO3 rods. Solid State Sci 8:1164–1167
Tran TA, Krishnamoorthy K, Song YW, Cho SK, Kim SJ (2014) Toxicity of nano molybdenum trioxide toward invasive breast cancer cells. ACS Appl Mater Interf 6:2980–2986
Kraft A (2019) Electrochromism: a fascinating branch of electrochemistry. ChemTexts 5:1. https://doi.org/10.1007/s40828-018-0076-x
Wu CM, Naseem S, Chou MH, Wang JH, Jian YQ (2019) Recent advances in tungsten-oxide-based materials and their applications. https://doi.org/10.3389/fmats.2019.00049
Guggenbichler JP (2022) Dramatic increase of multi-resistant microorganisms is self-inflicted. Effective and easy solutions are available. J Clin Med Images 6:1–5
Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, for the EPOC II Group of Investigators (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329
National Nosocomial Infections Surveillance (NNIS) Report, data summary from January 1992 to June 2002 issued August 2002. Am J Infect Contr 30:458–475
Hutchings MI, Truman AW, Wilkinson B (2019) Antibiotics: past, present and future. Curr Opin Microbiol 51:72–80
https://www.n-tv.de/wissen/Antibiotika-Resistenz-fordert-1.2-Millionen-Opfer-article23069318.html
Brook I (2013) Acute sinusitis in children. Pediatr Clin North Am 60:409–424
Magalhães C, Lima M, Trieu-Cuot P, Ferreira P (2021) To give or not to give antibiotics is not the only question. Lancet Infect Dis 21:e191–e201
Han D, Wang N, Zhang L (2009) The effect of myrtol standardized on human nasal ciliary beat frequency and mucociliary transport time. Am J Rhinol Allergy 23:610–614
留言 (0)