Molybdenum and tungsten: oxides, suboxides and oxide hydrates

Lunk HJ, Hartl H (2017) Discovery, properties and applications of molybdenum and its compounds. ChemTexts 3:13. https://doi.org/10.1007/s40828-017-0048-6

Article  CAS  Google Scholar 

Lunk HJ, Hartl H (2019) Discovery, properties and applications of tungsten and its inorganic compounds. ChemTexts 5:15. https://doi.org/10.1007/s40828-019-0088-1

Article  CAS  Google Scholar 

Berkowitz J, lnghram MG, Chupka WA (1957) Polymeric gaseous species in the sublimation of molybdenum trioxide. J Chem Phys 26:842–845

CAS  Google Scholar 

Kihlborg L (1963) Least squares refinement of the crystal structure of molybdenum trioxide. Arkiv Kemi 21:357–364

CAS  Google Scholar 

McCarron EM III (1986) β-MoO3: a metastable analogue of WO3. J Chem Soc Chem Commun 1986:336–338

Google Scholar 

Parise JB, McCarron EM III, Von Dreele R, Goldstone JA (1991) β-MoO3 produced from a novel freeze drying route. J Solid State Chem 93:193–201

CAS  Google Scholar 

Sayede AD, Amriou T, Pernisek M, Khelifa B, Mathieu C (2005) An ab initio LAPW study of the [alpha] and [beta] phases of bulk molybdenum trioxide, MoO3. Chem Phys 316:72–82

CAS  Google Scholar 

Parise JB, McCarron EM III, Sleight AW (1987) A new modification of ReO3-type MoO3 and the deuterated intercalation compound from which it is derived: D0.99MoO3. Mater Res Bull 22:803–811

CAS  Google Scholar 

McCarron EM III, Calabrese JC (1991) The growth and single crystal structure of a high pressure phase of molybdenum trioxide: MoO3-II. J Solid State Chem 91:121–125

CAS  Google Scholar 

Lunk HJ, Hartl H, Hartl MA, Fait MJG, Shenderovich IG, Feist M, Frisk TA, Daemen LL, Mauder D, Eckelt R, Gurinov AA (2010) “Hexagonal molybdenum trioxide”—known for 100 years and still a fount of new discoveries. Inorg Chem 49:9400–9408

CAS  Google Scholar 

Guo J, Zavalij P, Whittingham MS (1994) Preparation and characterization of a MoO3 with hexagonal structure. Eur J Solid State Inorg Chem 31:833–842

CAS  Google Scholar 

Schäfer H, Grofe T, Trenkel M (1973) The chemical transport of molybdenum and tungsten and of their dioxides and sulfides. J Solid State Chem 8:14–28

Google Scholar 

McCarroll WH, Ramanujachary (2011) Oxides: solid-state chemistry. https://doi.org/10.1002/9781119951438.eibc0161

Robin M, Day P (1968) Mixed-valence chemistry: a survey and classification. Adv Inorg Chem Radiochem 10:247–422

Google Scholar 

Chang LLY, Phillips B (1969) Phase relations in refractory metal-oxygen systems. J Am Ceram Soc: 527–533

Greenblatt M (1988) Molybdenum oxide bronzes with quasi-low-dimensional properties. Chem Rev 88:31–53

CAS  Google Scholar 

Canadell E, Whangbo MH (1988) Semiconducting properties of lithium molybdate, Li0.33 MoO3. Inorg Chem 27:228–232

CAS  Google Scholar 

Magnéli A (1948) The crystal structure of Mo4O11 (γ-molybdenum oxide). Acta Chem Scand 2:861–871

Google Scholar 

Schlenker C, Dumas J, Escribe-Filippini C, Guyot H, Marcus J, Fourcaudot C (1985) Charge-density-wave instabilities in the low-dimensional molybdenum bronzes and oxides. Philos Mag 52B:643–667

Google Scholar 

Sato M, Fujishita H, Sato S, Hoshino S (1986) Structural transitions in Mo8O23. J Phys C 19:3059–3067

CAS  Google Scholar 

Ganne M, Boumaza A, Dion M, Dumas J (1985) The blue bronze Tl0.30MoO3 structure and physical properties. J Mater Res Bull 20:1297–1308

CAS  Google Scholar 

Whangbo MH, Canadell E (1988) Band electronic structure of the lithium molybdenum purple bronze Li0.9Mo6O17. J Am Chem Soc 110:358–363

CAS  Google Scholar 

Collins BT, Greenblatt M, McCarroll WH, Hull GW (1988) Quasi-one-dimensionality in the new bronze-like compound La2Mo2O7. J Solid State Chem 73:507–513

CAS  Google Scholar 

Wadsley AD (1967). In: Mandelcorn L (ed.) Non-stoichiometric compounds. Academic Press, New York, pp 98–209

Canadell E, Whangbo MH (1991) Conceptual aspects of structure-property correlations and electronic instabilities, with applications to low-dimensional transition-metal oxides. Chem Rev 91:965–1034

CAS  Google Scholar 

Sahle W (1983) Electron microscopy studies of tungsten oxides in the range WO3–WO2.72. Phase relations, defect structures, structural transformations and electrical conductivity. Chem Commun Univ Stockholm 4:1–53

Google Scholar 

Gebert E, Ackermann RJ (1966) Substoichiometry of tungsten trioxide; the crystal systems of WO3.00, WO2.98, and WO2.96. Inorg Chem 5:136–142

CAS  Google Scholar 

Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. I. Effects of oxygen vacancies and doping on electronic and optical properties of different phases of WO3. J Appl Phys 108:093713-1–093713-7

Google Scholar 

Vogt T, Woodward PM, Hunter BA (1999) The high-temperature phases of WO3. J Solid State Chem 144:209–215

CAS  Google Scholar 

Gerand G, Novogorocki G, Guenot J, Figlarz M (1979) Structural study of a new hexagonal form of tungsten trioxide. J Solid State Chem 29:429–434

CAS  Google Scholar 

Balázsi C, Farkas-Jahnke M, Kotsis I, Petrás L, Pfeifer J (2001) The observation of cubic tungsten trioxide at high-temperature dehydration of tungsten acid hydrate. Solid State Ionics 141–142:411–416

Google Scholar 

Szilágyi IM, Wang L, Gouma PI, Balázsi C, Madarász J, Pokol G (2009) Preparation of hexagonal WO3 from hexagonal ammonium tungsten bronze for sensing NH3. Mater Res Bull 44:505–508

Google Scholar 

Trasorras JRL, Wolfe TA, Knabl W, Venezia C, Lemus R, Lassner E, Schubert WD, Lüderitz E, Wolf HU (2016) Tungsten, tungsten alloys, and tungsten compounds. Ullmann’s encyclopedia of industrial chemistry. Wiley-VCH Verlag GmbH & Co. KGaA, New York, pp 1–53

Google Scholar 

Schmidt P, Binnewies M, Glaum R, Schmidt M (2013) Chemical vapor transport reactions methods, materials, modeling. In: INTECH open science/open minds. https://doi.org/10.5772/55547. (Chapter 9:227–305)

Migas DB, Shaposhnikov VL, Rodin VN, Borisenko VE (2010) Tungsten oxides. II. The metallic nature of Magnéli phases. J Appl Phys 108:093714-1–093714-6

Google Scholar 

Wöhler F (1824) Ueber das Wolfram (About tungsten). Ann Physik [in German] 78:345–358

Google Scholar 

Dickens PG, Whittingham MS (1968) The tungsten bronzes and related compounds. Rev Chem Soc 22:30–44

CAS  Google Scholar 

Lunk HJ (2015) Incandescent lighting and powder metallurgical manufacturing of tungsten wire. ChemTexts 1:3. https://doi.org/10.1007/s40828-014-0003-8

Article  CAS  Google Scholar 

Lunk HJ, Ziemer B, Salmen M, Heidemann D (1993–1994) What is behind ‘tungsten blue oxides’? Int J Refract Metals Hard Mater 12:17–26

Lunk HJ, Salmen M, Heidemann D (1998) Solid-state 1H-NMR studies of different tungsten blue oxides and related substances. Int J Refract Metals Hard Mater 16:23–30

CAS  Google Scholar 

Kim M, Park J, Kang M, Kim JY, Lee SW (2020) Toward efficient electrocatalytic oxygen evolution: emerging opportunities with metallic pyrochlore oxides for electrocatalysts and conductive supports. ACS Cent Sci 6:880–891

CAS  Google Scholar 

Lemoine K, Moury R, Duran E, Arroyo-de Dompablo E, Morán E, Leblanc M, Hémon-Ribaud A, Grenèche JM, Galven C, Gunes V, Lhoste J, Maisonneuve V (2021) First mixed-metal fluoride pyrochlores obtained by topotactic oxidation of ammonium fluorides under F2 gas. Cryst Growth Des 21:935–945

CAS  Google Scholar 

Maričić S, Smith JAS (1958) A Nuclear magnetic resonance study of the hydrates of molybdenum trioxide. J Chem Soc 1958:886–891

Google Scholar 

Nakamoto K, Margoshes M, Rundle RE (1955) Stretching frequencies as a function of distances in hydrogen bonds. J Am Chem Soc 77:6480–6486. https://doi.org/10.1021/ja01629a013

Article  CAS  Google Scholar 

Schröder FA, Krebs B, Mattes R (1972) Die Schwingungsspektren von MoO3·2H2O und MoO2Cl2·H2O (Vibrational spectra of MoO3·2H2O and MoO2Cl2·H2O). Z Naturforschg [in German] 27b:22–25

Oswald HR, Günter JR, Dubler E (1975) Topotactic decomposition and crystal structure of white molybdenum trioxide-monohydrate: prediction of structure by topotaxy. J Solid State Chem 13:330–338

CAS  Google Scholar 

Krebs B (1972) Die Kristallstruktur von MoO3·2H2O (The crystal structure of MoO3·2H2O). Acta Cryst [in German] B28:2222–2231. https://doi.org/10.1107/S0567740872005849

Article  Google Scholar 

Schwarzmann E, Glemser O (1961) Zur Bindung des Wassers in den Hydraten des Wolframtrioxids (The bonding of water in hydrates of tungsten trioxide). Z Anorg Allg Chem [in German] 312:45–49

CAS  Google Scholar 

Szymański JT, Roberts AC (1984) The crystal structure of tungstite, WO3·H2O. Canad Mineral 22:681–688

Google Scholar 

Günter JR, Amberg M, Schmalle H (1989) Direct synthesis and single crystal structure determination of cubic pyrochlore-type tungsten trioxide hydrate WO3·0.5H2O. Mat Res Bull 24:289–292

Google Scholar 

Klinbumrung A, Thongtem T, Thongtem S (2012) Characterization of orthorhombic α-MoO3 microplates produced by a microwave plasma process. J Nanomat. https://doi.org/10.1155/2012/930763

Article  Google Scholar 

Song J, Ni X, Gao L, Zheng H (2007) Synthesis of metastable h-MoO3 by simple chemical precipitation. Mat Chem Phys 102:245–248

CAS  Google Scholar 

Vargas-Consuelos CI, Camacho-López M (2014) A facile method to prepare hexagonal molybdenum trioxide microrods. Superficies y Vacio 27:123–125

CAS  Google Scholar 

Song J, Ni X, Song J, Ni X, Zhang D, Zheng H (2006) Fabrication and photoluminescence properties of hexagonal MoO3 rods. Solid State Sci 8:1164–1167

CAS  Google Scholar 

Tran TA, Krishnamoorthy K, Song YW, Cho SK, Kim SJ (2014) Toxicity of nano molybdenum trioxide toward invasive breast cancer cells. ACS Appl Mater Interf 6:2980–2986

Google Scholar 

Kraft A (2019) Electrochromism: a fascinating branch of electrochemistry. ChemTexts 5:1. https://doi.org/10.1007/s40828-018-0076-x

Article  CAS  Google Scholar 

Wu CM, Naseem S, Chou MH, Wang JH, Jian YQ (2019) Recent advances in tungsten-oxide-based materials and their applications. https://doi.org/10.3389/fmats.2019.00049

Guggenbichler JP (2022) Dramatic increase of multi-resistant microorganisms is self-inflicted. Effective and easy solutions are available. J Clin Med Images 6:1–5

Google Scholar 

Vincent JL, Rello J, Marshall J, Silva E, Anzueto A, Martin CD, Moreno R, Lipman J, Gomersall C, Sakr Y, Reinhart K, for the EPOC II Group of Investigators (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329

National Nosocomial Infections Surveillance (NNIS) Report, data summary from January 1992 to June 2002 issued August 2002. Am J Infect Contr 30:458–475

Hutchings MI, Truman AW, Wilkinson B (2019) Antibiotics: past, present and future. Curr Opin Microbiol 51:72–80

CAS  Google Scholar 

https://www.n-tv.de/wissen/Antibiotika-Resistenz-fordert-1.2-Millionen-Opfer-article23069318.html

Brook I (2013) Acute sinusitis in children. Pediatr Clin North Am 60:409–424

Google Scholar 

Magalhães C, Lima M, Trieu-Cuot P, Ferreira P (2021) To give or not to give antibiotics is not the only question. Lancet Infect Dis 21:e191–e201

Google Scholar 

Han D, Wang N, Zhang L (2009) The effect of myrtol standardized on human nasal ciliary beat frequency and mucociliary transport time. Am J Rhinol Allergy 23:610–614

留言 (0)

沒有登入
gif