Endocranial casts are capable of capturing the general brain form in extinct mammals due to the high fidelity of the endocranial cavity and the brain in this clade. Camelids, the clade including extant camels, llamas, and alpacas, today display high levels of gyrification and brain complexity. The evolutionary history of the camelid brain has been described as involving unique neocortical growth dynamics which may have led to its current state. However, these inferences are based on their fossil endocast record from approximately ∼40 Mya (Eocene) to ∼11 Mya (Miocene), with a gap in this record for the last ∼10 million years. Here, we present the first descriptions of two camelid endocrania that document the recent history of the camelid brain: a new specimen of Palaeolama sp. from ∼1.2 Mya, and the plaster endocast of Camelops hesternus, a giant camelid from ∼44 to 11 Kya which possessed the largest brain (∼990 g) of all known camelids. We find that neocortical complexity evolved significantly between the Miocene and Pleistocene Epochs. Already ∼1.2 Mya the camelid brain presented morphologies previously known only in extant taxa, especially in the frontal and parietal regions, which may also be phylogenetic informative. The new fossil data indicate that during the Pleistocene, camelid brain dynamics experienced neocortical invagination into the sagittal sinus rather than evagination out of it, as observed in Eocene to Miocene taxa.
© 2022 The Author(s). Published by S. Karger AG, Basel
References _Journal>Anthropocene Rev. 2014 Dec;1(3):225–42. _Journal>Anatom Histol Embryol. 1973;2(4):301–15. _Journal>Hist Biol. 2016 Feb 17;28(1–2):120–7. _Journal>J Proteomics. 2019 Mar 1;194:218–25. _Journal>MeshLab: an Open-Source Mesh Processing Tool. Sixth Eurographics Italian Chapter Conference; 2020. p. 12. ed2008. _Journal>Body size in mammalian paleobiology: estimation and biological implications. Cambridge (UK): Cambridge University Press; 1990. _Journal>Cervaux d’Animaux Disparu. Paris, FranceEditeurs: Masson et C.; 1962. _Journal>Ann de Paleontologie. 1973;59:115–32. _Journal>Comptes Rendus de l’Academie des Sci. 1968(266):2320–3. _Journal>Moulages endocraines d’Artiodactyles primitifs Annales de Paleontologie; 1969. p. 195–248. _Journal>Ameghiniana. 1998;3:285–9. _Journal>C R Biol. 2012 Jan;335(1):32–50. _Journal>Proc U S Natl Mus. 1913;46(2025):267–77. _Journal>Mol Biol Evol. 2015 Sep;32(9):2433–40. _Journal>Zoologische Jahrbiicher Abteilung fur Anatomie und Ontogenie Dertiere. 1965;82:155–76. _Journal>Evolution of tertiary mammals of North America Vo 1: Terrestrial Carnivores, Ungulates, and Ungulatelike Mammals. Cambridge: Cambridge University Press; 1998. p. 439–62. _Journal>Geochimica et Cosmochimica Acta. 2007;71(24):5956–67. _Journal>Body size in mammalian paleobiology: estimation and biological implications. Cambridge, UK: Cambridge University Press; 1990. p. 255–99. _Journal>Science. 1970;170(3963):1224–5. _Journal>Am Nat. 1971;105(943):227–39. _Journal>The theory of encephalization. Annals New York Academy of Sciences. New York: Annals New York Academy of Sciences; 1977. p. 146–60. _Journal>Evolution of Nervous systems: Academic Press; 2007. p. 1–12. _Journal>J Zoolog Syst Evol Res. 2009;18(3):161–95. _Journal>Verhandlungen der Deutschen Zoologischen Gesellschaft. 1982:173–83. _Journal>The Paleontological Society Paper. 2016 ed. Department of Paleontology of the “Institut des Sciences de l’Évolution” University of Montpellier; 2016. p. 183–95. https://morphomuseum.com/. _Journal>Proc Acad Nat Sci Phila. 1873;7:172–3. _Journal>PLoS Biol. 2014 Nov;12(11):e1002000. _Journal>Swiss J Palaeontol. 2020;139(1):5. _Journal>J Vertebr Paleontol. 2009;29(4):1199–211. _Journal>J Morphol. 2007 Oct;268(10):844–65. _Journal>Proc Biol Sci. 2012 Sep 22;279(1743):3670–7. _Journal>In: Paleoneurology of Amniotes: New Directions in the Study of Fossil Endocasts. Dozo MT., Paulina-Carabajal A., Macrini TE., Walsh S. editors.. Springer International Publishing; 2023. p. 507–555. _Journal>Les grandes lignes de l'histoire de la gyrencephalisation chez les camelides; 1971a. p. 658–65. _Journal>Bulletin du Muséum national d’histoire naturelle. 1971b;3(4):325. _Journal>Mammalia. 1971a;35:658–665. _Journal>Bulletin du Muséum national d’histoire naturelle. 1971b;3(4):1–325. https://www.biodiversitylibrary.org/ Go to this Web page. _Journal>Front Ecol Evol. 2019;7. _Journal>Fossiles de la Pampa, Amerique du Sud; 1889. _Journal>J Mammal Evol. 2005;12(3–4):303–36. _Journal>Science. 2011 May 20;332(6032):955–7. _Journal>J Mammal Evol. 2012;20(1):45–56. _Journal>Beiträge zur Kenntnis der Xenarthra auf Grund der Santiago Roth’schen Sammlung des Zoologischen Museums der Universität Zürich. Imprimerie Albert Kundig; 1920. p. 58–9. _Journal>Trans Am Philosophical Soc. 1940;28(4):363–746. _Journal>Brains through time: a natural history of vertebrates. New York, USA: Oxford University Press; 2020. _Journal>Palaeogeogr Palaeoclimatol Palaeoecol. 2004;212(3–4):315–29. _Journal>Bull Los Angeles County Mus. 1965;1:50. _Journal>Bull Am Mus Nat Hist. 1898;X:93–143. _Journal>Quat Sci Rev. 2011 Sep;30(19–20):2355–60. million years of camelid history. In: Hassler R, Stephan H, editor. Evolution of the Forebrain. New York: Springer Science and Business Media; 1966. p. 153–61. 9;(95):27. Article / Publication DetailsFirst-Page Preview
Received: February 20, 2022
Accepted: December 12, 2022
Published online: December 27, 2022
Number of Print Pages: 14
Number of Figures: 5
Number of Tables: 2
ISSN: 0006-8977 (Print)
eISSN: 1421-9743 (Online)
For additional information: https://www.karger.com/BBE
Figures Tables
留言 (0)