Spatiotemporal perspectives on tuberculosis chemotherapy

Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis (TB), accounts for over ten million infections and over 1.5 million deaths every year [1]. Upon infection, the seesaw between Mtb and our immune systems creates microenvironments that are compositionally distinctive and changing over time. While the field has begun to better understand the spatial complexity of TB disease, our understanding and experimental dissection of the temporal dynamics of TB and TB drug treatment is much more rudimentary. However, it is the combined spatiotemporal heterogeneity of TB disease that creates niches and time windows within which the pathogen can survive and thrive during treatment. Here, we review the emerging data on the interactions of spatial and temporal dynamics as they relate to TB disease and treatment. A better understanding of the interactions of Mtb, host, and antibiotics through space and time will elucidate treatment failure and potentially identify opportunities for new TB treatment regimens.

留言 (0)

沒有登入
gif