Stereotactic and Functional Neurosurgery
Moosa S.a· Bond A.E.b· Wang T.R.c· Farzad F.d· Asthagiri A.R.a· Elias W.J.aaDepartment of Neurological Surgery, University of Virginia, Charlottesville, VA, USA
bDepartment of Neurological Surgery, Semmes Murphey Clinic, Memphis, TN, USA
cDepartment of Neurological Surgery, Swedish Neuroscience Institute, Seattle, WA, USA
dSchool of Medicine, University of Virginia, Charlottesville, VA, USA
Stereotact Funct Neurosurg
Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Rent via DeepDyve Unlimited fulltext viewing of this article Organize, annotate and mark up articles Printing and downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication DetailsFirst-Page Preview
Received: July 27, 2022
Accepted: December 11, 2022
Published online: February 01, 2023
Number of Print Pages: 8
Number of Figures: 3
Number of Tables: 1
ISSN: 1011-6125 (Print)
eISSN: 1423-0372 (Online)
For additional information: https://www.karger.com/SFN
AbstractIntroduction: The aim of this study was to determine the safety and feasibility of convection-enhanced delivery of autologous cerebrospinal fluid (CSF) for enhancing intraoperative magnetic resonance imaging (MRI) of the basal ganglia during stereotactic neurosurgery. Methods: This pilot study was conducted in 4 patients with Parkinson’s disease (PD) who underwent MRI-guided deep brain stimulation of the globus pallidus internus (GPi). CSF was obtained via lumbar puncture after general anesthesia and prior to incision. A frameless stereotaxy system was installed, and an infusion catheter was inserted to the GPi using intraoperative MRI. Infusion of autologous CSF was performed at a convective rate of 5 µL/min with a maximum volume of infusion (Vi) of 500 mL. T2-weighted MRI scans were obtained every 15 min up to a maximum of 105 min in order to calculate the volume of distribution (Vd). Safety was assessed with adverse event monitoring, and clinical outcomes were measured with changes in unmedicated UPDRS part III and PDQ-39 scores from baseline to 6 months postoperatively. Results: All four infusions were safe and without adverse events. The mean unmedicated UPDRS part III and PDQ-39 scores improved by 24% and 26%, respectively. The Vd:Vi ratio ranged from 2.2 to 2.8 and peaked 45 min from the onset of infusion, which is when the borders of the GPi could generally be visualized based on T2-weighted MRI. Two patients underwent refinement of the stereotactic targeting based on infusion-enhanced images. Conclusions: The convective administration of autologous CSF to deep brain structures appears safe and feasible for enhancing intraoperative MRI during stereotactic procedures. Infusion-enhanced imaging with target-specific infusates could be developed to visualize neurochemical circuits or cellular regions that currently are not seen with anatomic/structural MRI.
© 2023 S. Karger AG, Basel
References Black PM, Moriarty T, Alexander E 3rd, Stieg P, Woodard EJ, Gleason PL, et al. Development and implementation of intraoperative magnetic resonance imaging and its neurosurgical applications. Neurosurgery. 1997;41(4):831–42; discussion 842–5. Hall WA, Martin AJ, Liu H, Nussbaum ES, Maxwell RE, Truwit CL. Brain biopsy using high-field strength interventional magnetic resonance imaging. Neurosurgery. 1999;44(4):807–13; discussion 813–4. Burchiel KJ, McCartney S, Lee A, Raslan AM. Accuracy of deep brain stimulation electrode placement using intraoperative computed tomography without microelectrode recording. J Neurosurg. 2013;119(2):301–6. Mirzadeh Z, Chapple K, Lambert M, Evidente VG, Mahant P, Ospina MC, et al. Parkinson's disease outcomes after intraoperative CT-guided “asleep” deep brain stimulation in the globus pallidus internus. J Neurosurg. 2016;124(4):902–7. Patel NK, Plaha P, Gill SS. Magnetic resonance imaging-directed method for functional neurosurgery using implantable guide tubes. Neurosurgery. 2007;61(5 Suppl 2):358–65; discussion 365–6. Sillay KA, Rusy D, Buyan-Dent L, Ninman NL, Vigen KK. Wide-bore 1.5 T MRI-guided deep brain stimulation surgery: initial experience and technique comparison. Clin Neurol Neurosurg. 2014;127:79–85. Starr PA, Markun LC, Larson PS, Volz MM, Martin AJ, Ostrem JL. Interventional MRI-guided deep brain stimulation in pediatric dystonia: first experience with the ClearPoint system. J Neurosurg Pediatr. 2014;14(4):400–8. Starr PA, Martin AJ, Ostrem JL, Talke P, Levesque N, Larson PS. Subthalamic nucleus deep brain stimulator placement using high-field interventional magnetic resonance imaging and a skull-mounted aiming device: technique and application accuracy. J Neurosurg. 2010;112(3):479–90. Vega RA, Holloway KL, Larson PS. Image-guided deep brain stimulation. Neurosurg Clin N Am. 2014;25(1):159–72. Lenglet C, Abosch A, Yacoub E, De Martino F, Sapiro G, Harel N. Comprehensive in vivo mapping of the human basal ganglia and thalamic connectome in individuals using 7T MRI. PLoS One. 2012;7(1):e29153. Cho ZH, Min HK, Oh SH, Han JY, Park CW, Chi JG, et al. Direct visualization of deep brain stimulation targets in Parkinson disease with the use of 7-tesla magnetic resonance imaging. J Neurosurg. 2010;113(3):639–47. Bond AE, Dallapiazza RF, Lopes MB, Elias WJ. Convection-enhanced delivery improves MRI visualization of basal ganglia for stereotactic surgery. J Neurosurg. 2016;125(5):1080–6. Bobo RH, Laske DW, Akbasak A, Morrison PF, Dedrick RL, Oldfield EH. Convection-enhanced delivery of macromolecules in the brain. Proc Natl Acad Sci U S A. 1994;91(6):2076–80. Lonser RR, Sarntinoranont M, Morrison PF, Oldfield EH. Convection-enhanced delivery to the central nervous system. J Neurosurg. 2015;122(3):697–706. Lieberman DM, Laske DW, Morrison PF, Bankiewicz KS, Oldfield EH. Convection-enhanced distribution of large molecules in gray matter during interstitial drug infusion. J Neurosurg. 1995;82(6):1021–9. Zhou Z, Singh R, Souweidane MM. Convection-enhanced delivery for diffuse intrinsic pontine glioma treatment. Curr Neuropharmacol. 2017;15(1):116–28. Lam MF, Thomas MG, Lind CRP. Neurosurgical convection-enhanced delivery of treatments for Parkinson's disease. J Clin Neurosci. 2011;18(9):1163–7. Barua NU, Bienemann AS, Woolley M, Wyatt MJ, Johnson D, Lewis O, et al. Convection-enhanced delivery of MANF--volume of distribution analysis in porcine putamen and substantia nigra. J Neurol Sci. 2015;357(1–2):264–9. Heiss JD, Lungu C, Hammoud DA, Herscovitch P, Ehrlich DJ, Argersinger DP, et al. Trial of magnetic resonance-guided putaminal gene therapy for advanced Parkinson’s disease. Mov Disord. 2019;34(7):1073–8. Luz M, Allen PC, Bringas J, Boiko C, Stockinger DE, Nikula KJ, et al. Intermittent convection-enhanced delivery of GDNF into rhesus monkey putamen: absence of local or cerebellar toxicity. Arch Toxicol. 2018;92(7):2353–67. Whone A, Luz M, Boca M, Woolley M, Mooney L, Dharia S, et al. Randomized trial of intermittent intraputamenal glial cell line-derived neurotrophic factor in Parkinson’s disease. Brain. 2019;142(3):512–25. Heiss JD, Walbridge S, Argersinger DP, Hong CS, Ray-Chaudhury A, Lonser RR, et al. Convection-enhanced delivery of muscimol into the bilateral subthalamic nuclei of nonhuman primates. Neurosurgery. 2019;84(6):E420–E429. Fan X, Nelson BD, Ai Y, Stiles DK, Gash DM, Hardy PA, et al. Continuous intraputamenal convection-enhanced delivery in adult rhesus macaques. J Neurosurg. 2015;123(6):1569–77. Barua NU, Miners JS, Bienemann AS, Wyatt MJ, Welser K, Tabor AB, et al. Convection-enhanced delivery of neprilysin: a novel amyloid-beta-degrading therapeutic strategy. J Alzheimers Dis. 2012;32(1):43–56. Fiandaca MS, Forsayeth JR, Dickinson PJ, Bankiewicz KS. Image-guided convection-enhanced delivery platform in the treatment of neurological diseases. Neurotherapeutics. 2008;5(1):123–7. Park SC, Lee CS, Kim SM, Choi EJ, Lee JK. Comparison of the stereotactic accuracies of function-guided deep brain stimulation, calculated using multitrack target locations geometrically inferred from three-dimensional trajectory rotations, and of magnetic resonance imaging-guided deep brain stimulation and outcomes. World Neurosurg. 2017;98:734–49.e7. Ostrem JL, Ziman N, Galifianakis NB, Starr PA, Luciano MS, Katz M, et al. Clinical outcomes using ClearPoint interventional MRI for deep brain stimulation lead placement in Parkinson’s disease. J Neurosurg. 2016;124(4):908–16. O'Gorman RL, Shmueli K, Ashkan K, Samuel M, Lythgoe DJ, Shahidiani A, et al. Optimal MRI methods for direct stereotactic targeting of the subthalamic nucleus and globus pallidus. Eur Radiol. 2011;21(1):130–6. Halpern CH, Danish SF, Baltuch GH, Jaggi JL. Brain shift during deep brain stimulation surgery for Parkinson’s disease. Stereotact Funct Neurosurg. 2008;86(1):37–43. Maruyama S, Fukunaga M, Fautz HP, Heidemann R, Sadato N. Comparison of 3T and 7T MRI for the visualization of globus pallidus sub-segments. Sci Rep. 2019;9(1):18357. Hirai T, Ohye C, Nagaseki Y, Matsumura M. Cytometric analysis of the thalamic ventralis intermedius nucleus in humans. J Neurophysiol. 1989;61(3):478–87. Patil PG, Conrad EC, Aldridge JW, Chenevert TL, Chou KL. The anatomical and electrophysiological subthalamic nucleus visualized by 3-T magnetic resonance imaging. Neurosurgery. 2012;71(6):1089–95; discussion 1095. Sudhyadhom A, Haq IU, Foote KD, Okun MS, Bova FJ. A high resolution and high contrast MRI for differentiation of subcortical structures for DBS targeting: the Fast Gray Matter Acquisition T1 Inversion Recovery (FGATIR). Neuroimage. 2009;47(Suppl 2):T44–52. Ebani EJ, Kaplitt MG, Wang Y, Nguyen TD, Askin G, Chazen JL. Improved targeting of the globus pallidus interna using quantitative susceptibility mapping prior to MR-guided focused ultrasound ablation in Parkinson's disease. Clin Imaging. 2020;68:94–8. Article / Publication DetailsFirst-Page Preview
Received: July 27, 2022
Accepted: December 11, 2022
Published online: February 01, 2023
Number of Print Pages: 8
Number of Figures: 3
Number of Tables: 1
ISSN: 1011-6125 (Print)
eISSN: 1423-0372 (Online)
For additional information: https://www.karger.com/SFN
Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
留言 (0)