The gut microbiota in obesity and weight management: microbes as friends or foe?

Gibson, G. R. & Roberfroid, M. B. Dietary modulation of the human colonic microbiota: introducing the concept of prebiotics. J. Nutr. 125, 1401–1412 (1995).

Article  CAS  Google Scholar 

Gibson, G. R. et al. The International Scientific Association for Probiotics and Prebiotics (ISAPP) consensus statement on the definition and scope of prebiotics. Nat. Rev. Gastroenterol. Hepatol. 14, 491–502 (2017).

Article  Google Scholar 

Bäckhed, F. et al. The gut microbiota as an environmental factor that regulates fat storage. Proc. Natl Acad. Sci. USA 101, 15718–15723 (2004).

Article  Google Scholar 

Bäckhed, F., Manchester, J. K., Semenkovich, C. F. & Gordon, J. I. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc. Natl Acad. Sci. USA 104, 979–984 (2007).

Article  Google Scholar 

Ley, R. E. et al. Obesity alters gut microbial ecology. Proc. Natl Acad. Sci. USA 102, 11070–11075 (2005).

Article  CAS  Google Scholar 

Turnbaugh, P. J. et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031 (2006).

Article  Google Scholar 

Kirk, R. G. “Life in a germ-free world”: isolating life from the laboratory animal to the bubble boy. Bull. Hist. Med. 86, 237–275 (2012).

Article  Google Scholar 

Evrard, E., Hoet, P. P., Eyssen, H., Charlier, H. & Sacquet, E. Faecal lipids in germ-free and conventional rats. Br. J. Exp. Pathol. 45, 409–414 (1964).

CAS  Google Scholar 

Hoet, P. P. & Eyssen, H. Steatorrhoea in rats with an intestinal Cul-De-Sac. Gut 5, 309–314 (1964).

Article  CAS  Google Scholar 

Goodlad, R. A. et al. Plasma enteroglucagon, gastrin and peptide YY in conventional and germ-free rats refed with a fibre-free or fibre-supplemented diet. Q. J. Exp. Physiol. 74, 437–442 (1989).

Article  CAS  Google Scholar 

Daubioul, C. A., Taper, H. S., De Wispelaere, L. D. & Delzenne, N. M. Dietary oligofructose lessens hepatic steatosis, but does not prevent hypertriglyceridemia in obese zucker rats. J. Nutr. 130, 1314–1319 (2000).

Article  CAS  Google Scholar 

Daubioul, C. et al. Dietary fructans, but not cellulose, decrease triglyceride accumulation in the liver of obese Zucker fa/fa rats. J. Nutr. 132, 967–973 (2002).

Article  CAS  Google Scholar 

Le Poul, E. et al. Functional characterization of human receptors for short chain fatty acids and their role in polymorphonuclear cell activation. J. Biol. Chem. 278, 25481–25489 (2003).

Article  Google Scholar 

Brown, A. J. et al. The Orphan G protein-coupled receptors GPR41 and GPR43 are activated by propionate and other short chain carboxylic acids. J. Biol. Chem. 278, 11312–11319 (2003).

Article  CAS  Google Scholar 

Nilsson, N. E., Kotarsky, K., Owman, C. & Olde, B. Identification of a free fatty acid receptor, FFA2R, expressed on leukocytes and activated by short-chain fatty acids. Biochem. Biophys. Res. Commun. 303, 1047–1052 (2003).

Article  CAS  Google Scholar 

de Vos, W. M., Tilg, H., Van Hul, M. & Cani, P. D. Gut microbiome and health: mechanistic insights. Gut 71, 1020–1032 (2022).

Article  Google Scholar 

Rastelli, M., Cani, P. D. & Knauf, C. The gut microbiome influences host endocrine functions. Endocr. Rev. 40, 1271–1284 (2019).

Article  Google Scholar 

Kok, N. N. et al. Insulin, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide and insulin-like growth factor I as putative mediators of the hypolipidemic effect of oligofructose in rats.  J. Nut. 128, 1099–1103 (1998).

Article  CAS  Google Scholar 

Cani, P. D., Dewever, C. & Delzenne, N. M. Inulin-type fructans modulate gastrointestinal peptides involved in appetite regulation (glucagon-like peptide-1 and ghrelin) in rats. Br. J. Nutr. 92, 521–526 (2004).

Article  CAS  Google Scholar 

Cani, P. D., Neyrinck, A. M., Maton, N. & Delzenne, N. M. Oligofructose promotes satiety in rats fed a high-fat diet: involvement of glucagon-like Peptide-1. Obes. Res 13, 1000–1007 (2005).

Article  CAS  Google Scholar 

Cani, P. D. et al. Improvement of glucose tolerance and hepatic insulin sensitivity by oligofructose requires a functional glucagon-like peptide 1 receptor. Diabetes 55, 1484–1490 (2006).

Article  CAS  Google Scholar 

Delzenne, N. M., Cani, P. D., Daubioul, C. & Neyrinck, A. M. Impact of inulin and oligofructose on gastrointestinal peptides. Br. J. Nutr. 93, S157–S161 (2005).

Article  CAS  Google Scholar 

Ley, R. E., Turnbaugh, P. J., Klein, S. & Gordon, J. I. Microbial ecology: human gut microbes associated with obesity. Nature 444, 1022–1023 (2006).

Article  CAS  Google Scholar 

Duncan, S. H. et al. Human colonic microbiota associated with diet, obesity and weight loss. Int. J. Obes. 32, 1720–1724 (2008).

Article  CAS  Google Scholar 

Khachatryan, Z. A. et al. Predominant role of host genetics in controlling the composition of gut microbiota. PLoS One 3, e3064 (2008).

Article  Google Scholar 

Goodrich, J. K. et al. Human genetics shape the gut microbiome. Cell 159, 789–799 (2014).

Article  CAS  Google Scholar 

Turnbaugh, P. J. et al. A core gut microbiome in obese and lean twins. Nature 457, 480–484 (2009).

Article  CAS  Google Scholar 

Zoetendal, E. G., Akkermans, A. D. & De Vos, W. M. Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl. Environ. Microbiol. 64, 3854–3859 (1998).

Article  CAS  Google Scholar 

Cho, I. et al. Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488, 621–626 (2012).

Article  CAS  Google Scholar 

Cox, L. M. et al. Altering the intestinal microbiota during a critical developmental window has lasting metabolic consequences. Cell 158, 705–721 (2014).

Article  CAS  Google Scholar 

Daoust, L. et al. Gnotobiotic mice housing conditions critically influence the phenotype associated with transfer of faecal microbiota in a context of obesity. Gut https://doi.org/10.1136/gutjnl-2021-326475 (2022).

Article  Google Scholar 

Cani, P. D. & Knauf, C. Gnotobiotic mice housing conditions makes the difference in the context of obesity! Gut https://doi.org/10.1136/gutjnl-2022-328532 (2022).

Article  Google Scholar 

Hasan, N. & Yang, H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 7, e7502 (2019).

Article  Google Scholar 

Hu, S. et al. Dietary fat, but not protein or carbohydrate, regulates energy intake and causes adiposity in mice. Cell Metab. 28, 415–431.e4 (2018).

Article  CAS  Google Scholar 

Suriano, F. et al. Fat and not sugar as the determining factor for gut microbiota changes, obesity and related metabolic disorders in mice. Am. J. Physiol. Endocrinol. Metab. https://doi.org/10.1152/ajpendo.00141.2022 (2022).

Cani, P. D. et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 56, 1761–1772 (2007).

Article  CAS  Google Scholar 

Cani, P. D. et al. Selective increases of bifidobacteria in gut microflora improve high-fat-diet-induced diabetes in mice through a mechanism associated with endotoxaemia. Diabetologia 50, 2374–2383 (2007).

Article  CAS  Google Scholar 

Turnbaugh, P. J. et al. The effect of diet on the human gut microbiome: a metagenomic analysis in humanized gnotobiotic mice. Sci. Transl. Med 1, 6ra14 (2009).

Article  Google Scholar 

Hildebrandt, M. A. et al. High-fat diet determines the composition of the murine gut microbiome independently of obesity. Gastroenterology 137, 1716–1724 (2009).

Article  CAS  Google Scholar 

Cani, P. D. et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 1470–1481 (2008).

Article  CAS  Google Scholar 

Carvalho, B. M. et al. Modulation of gut microbiota by antibiotics improves insulin signalling in high-fat fed mice. Diabetologia 55, 2823–2834 (2012).

Article  CAS  Google Scholar 

Ding, S. et al. High-fat diet: bacteria interactions promote intestinal inflammation which precedes and correlates with obesity and insulin resistance in mouse. PLoS One 5, e12191 (2010).

Article  Google Scholar 

Rabot, S. et al. Germ-free C57BL/6J mice are resistant to high-fat-diet-induced insulin resistance and have altered cholesterol metabolism. FASEB J. 24, 4948–4959 (2010).

CAS  Google Scholar 

Caesar, R., Tremaroli, V., Kovatcheva-Datchary, P., Cani, P. D. & Bäckhed, F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 22, 658–668 (2015).

Article  CAS  Google Scholar 

Cani, P. D. et al. Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 1091–1103 (2009).

Article  CAS  Google Scholar 

Dewulf, E. M. et al. Insight into the prebiotic concept: lessons from an exploratory, double blind intervention study with inulin-type fructans in obese women. Gut 62, 1112–1121 (2013).

Article  CAS  Google Scholar 

Everard, A. et al. Responses of gut microbiota and glucose and lipid metabolism to prebiotics in genetic obese and diet-induced leptin-resistant mice. Diabetes 60, 2775–2786 (2011).

Article  CAS  Google Scholar 

Cani, P. D., Depommier, C., Derrien, M., Everard, A. & de Vos, W. M. Akkermansia muciniphila: paradigm for next-generation beneficial microorganisms. Nat. Rev. Gastroenterol. Hepatol. 19, 625–637 (2022).

Article 

留言 (0)

沒有登入
gif