Deciphering functional roles of synaptic plasticity and intrinsic neural firing in developing mouse visual cortex layer IV microcircuit

Beierlein, M. (2003). Two dynamically distinct inhibitory networks in layer 4 of the neocortex. Journal of Neurophysiology, 90(5), 2987.

Article  Google Scholar 

Cardin, J. A., Carlen, M., Meletis, K., Knoblich, U., Zhang, F., Deisseroth, K., Tsai, L. H., & Moore, C. I. (2009). Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature, 459(7247), 663–667.

Article  CAS  Google Scholar 

Cisneros-Franco, J. M., & de Villers-Sidani, É. (2019). Reactivation of critical period plasticity in adult auditory cortex through chemogenetic silencing of parvalbumin-positive interneurons. Proceedings of the National Academy of Sciences, 116(52), 26329–26331. https://doi.org/10.1073/pnas.1913227117.

Article  CAS  Google Scholar 

Cruikshank, S. J., Urabe, H., Nurmikko, A. V., & Connors, B. W. (2010). Pathway-specific feedforward circuits between thalamus and neocortex revealed by selective optical stimulation of axons. Neuron, 65(2), 230–245.

Article  CAS  Google Scholar 

Davis, M. F., Figueroa Velez, D. X., Guevarra, R. P., Yang, M. C., Habeeb, M., Carathedathu, M. C., & Gandhi, S. P. (2015). Inhibitory neuron transplantation into adult visual cortex creates a new critical period that rescues impaired vision. Neuron, 86(4), 1055–1066.

Article  CAS  Google Scholar 

Espinosa, J. S., & Stryker, M. P. (2012). Development and plasticity of the primary visual cortex. Neuron, 75(2), 230–249.

Article  CAS  Google Scholar 

Fagiolini, M., Fritschy, J. M., Low, K., Mohler, H., Rudolph, U., & Hensch, T. K. (2004). Specific GABAA circuits for visual cortical plasticity. Science, 303(5664), 1681–1683.

Article  CAS  Google Scholar 

Gonchar, Y., Wang, Q., & Burkhalter, A. (2007). Multiple distinct subtypes of GABAergic neurons in mouse visual cortex identified by triple immunostaining. Frontiers in Neuroanatomy, 1, 3.

Google Scholar 

Gu, Y., Huang, S., Chang, M. C., Worley, P., Kirkwood, A., & Quinlan, E. M. (2013). Obligatory role for the immediate early gene NARP in critical period plasticity. Neuron, 79(2), 335–346.

Article  CAS  Google Scholar 

Gutierrez, C., Cox, C. L., Rinzel, J., & Sherman, S. M. (2001). Dynamics of low-threshold spike activation in relay neurons of the cat lateral geniculate nucleus. The Journal of Neuroscience, 21(3), 1022–1032.

Article  CAS  Google Scholar 

Hanover, J. L., Huang, Z. J., Tonegawa, S., & Stryker, M. P. (1999). Brain-derived neurotrophic factor overexpression induces precocious critical period in mouse visual cortex. Journal of Neuroscience, 19(22), RC40.

Article  CAS  Google Scholar 

Hensch, T. K., & Fagiolini, M. (2005). Excitatory-inhibitory balance and critical period plasticity in developing visual cortex. Progress in Brain Research, 147, 115–124.

Article  CAS  Google Scholar 

Hensch, T. K., Fagiolini, M., Mataga, N., Stryker, M. P., Baekkeskov, S., & Kash, S. F. (1998). Local GABA circuit control of experience-dependent plasticity in developing visual cortex. Science, 282(5393), 1504–1508.

Article  CAS  Google Scholar 

Huang, Z. J., Kirkwood, A., Pizzorusso, T., Porciatti, V., Morales, B., Bear, M. F., Maffei, L., & Tonegawa, S. (1999). BDNF regulates the maturation of inhibition and the critical period of plasticity in mouse visual cortex. Cell, 98(6), 739–755.

Article  CAS  Google Scholar 

Jang, H. J., Chung, H., Rowland, J. M., Richards, B. A., Kohl, M. M., & Kwag, J. (2020). Distinct roles of parvalbumin and somatostatin interneurons in gating the synchronization of spike times in the neocortex. Science Advances, 6(47), eaay5333.

Article  CAS  Google Scholar 

Levelt, C. N., & Hubener, M. (2012). Critical-period plasticity in the visual cortex. Annual Review of Neuroscience, 35, 309–330.

Article  CAS  Google Scholar 

Kelsom, C., & Lu, W. (2013). Development and specification of GABAergic cortical interneurons. Cell & Bioscience, 3, 19.

Article  CAS  Google Scholar 

Khibnik, L. A., Cho, K. K., & Bear, M. F. (2010). Relative contribution of feedforward excitatory connections to expression of ocular dominance plasticity in layer 4 of visual cortex. Neuron, 66(4), 493–500.

Article  CAS  Google Scholar 

Ko, H., Cossell, L., Baragli, C., Antolik, J., Clopath, C., Hofer, S. B., & Mrsic-Flogel, T. D. (2013). The emergence of functional microcircuits in visual cortex. Nature, 496(7443), 96–100.

Article  CAS  Google Scholar 

Kuhlman, S. J., Lu, J., Lazarus, M. S., & Huang, Z. J. (2010). Maturation of GABAergic inhibition promotes strengthening of temporally coherent inputs among convergent pathways. PLoS Computational Biology, 6(6), e1000797.

Article  Google Scholar 

Kuhlman, S. J., Tring, E., & Trachtenberg, J. T. (2011). Fast-spiking interneurons have an initial orientation bias that is lost with vision. Nature Neuroscience, 14(9), 1121–1123.

Article  CAS  Google Scholar 

Liu, B. H., Wu, G. K., Arbuckle, R., Tao, H. W., & Zhang, L. I. (2007). Defining cortical frequency tuning with recurrent excitatory circuitry. Nature Neuroscience, 10(12), 1594–1600.

Article  CAS  Google Scholar 

Markram, H., Yun, W., & Tsodyks, M. (1998). Differential signaling via the same axon of neocortical pyramidal neurons. Proceedings of the National Academy of Sciences of the United States of America, 95(9), 5323–5328.

Article  CAS  Google Scholar 

Miao, Q., Yao, L., Rasch, M., Ye, Q., Li, X., & Zhang, X. (2016). Selective maturation of temporal dynamics of intracortical excitatory transmission at the critical period onset. Cell Reports, 16(6), 1677–1689.

Article  CAS  Google Scholar 

Markram, H., Lübke, J., Frotscher, M., & Sakmann, B. (1997). Regulation of synaptic efficacy by coincidence of postsynaptic aps and epsps. Science, 275(5297), 213–215.

Article  CAS  Google Scholar 

Markram, H., Toledo-Rodriguez, M., Wang, Y., Gupta, A., Silberberg, G., & Wu, C. (2004). Interneurons of the neocortical inhibitory system. Nature Reviews Neuroscience, 5(10), 793–807.

Article  CAS  Google Scholar 

Miao, Q. (2014). Circuit Mechanisms underlying the early developmental regulation of visual cortical plasticity, PhD thesis.

Oswald, A. M., & Reyes, A. D. (2011). Development of inhibitory timescales in auditory cortex. Cerebral Cortex, 21(6), 1351–1361.

Article  Google Scholar 

Pan, N. C., Fang, A., Shen, C., Sun, L., Wu, Q., & Wang, X. (2019). Early excitatory activity-dependent maturation of somatostatin interneurons in cortical layer 2/3 of mice. Cerebral Cortex, 29(10), 4107–4118.

Google Scholar 

Ramoa, A. S., & Sur, M. (1996). Short-term synaptic plasticity in the visual cortex during development. Cerebral Cortex, 6(4), 640–646.

Article  CAS  Google Scholar 

Rozov, A., & Burnashev, N. (1999). Polyamine-dependent facilitation of postsynaptic AMPA receptors counteracts paired-pulse depression. Nature, 401(6753), 594–598.

Article  CAS  Google Scholar 

Sakurai, I., Kubota, S., & Niwano, M. (2014). The onset and closure of critical period plasticity regulated by feedforward inhibition. Neurocomputing, 143, 261–268.

Article  Google Scholar 

Sale, A., Berardi, N., Spolidoro, M., Baroncelli, L., & Maffei, L. (2010). GABAergic inhibition in visual cortical plasticity. Frontiers in Cellular Neuroscience, 4, 10.

Google Scholar 

Sohal, V. S., Zhang, F., Yizhar, O., & Deiseeroth, K. (2009). Parvalbulmin neurons and gamma rhythms enhance cortical circuit performance. Nature, 459(7247), 698–702.

Article  CAS  Google Scholar 

Traub, R. D., Kopell, N., Bibbig, A., Buhl, E. H., LeBeau, F. E., & Whittington, M. A. (2001). Gap junctions between interneuron dendrites can enhance synchrony of gamma oscillations in distributed networks. The Journal of Neuroscience, 21(23), 9478–9486.

Article  CAS  Google Scholar 

Tsodyks, M. V., & Markram, H. (1997). The neural code between neocortical pyramidal neurons depends on neurotransmitter release probability. Proceedings of the National Academy of Sciences, 94(2), 719–723.

Article  CAS  Google Scholar 

Tuncdemir, S. N., Wamsley, B., Stam, F. J., Osakada, F., Goulding, M., Callaway, E. M., Rudy, B., & Fishell, C. (2016). Early somatostatin interneuron connectivity mediates the maturation of deep layer cortical circuits. Neuron, 89, 521–535.

Article  CAS  Google Scholar 

Trappenberg, T. P. (2010). Fundamentals of computational neuroscience. Oxford University Press, 2nd edition. 

Tremblay, R., Lee, S., & Rudy, B. (2016). GABAergic interneurons in the neocortex: from cellular properties to circuits. Neuron, 91, 260–292. https://doi.org/10.1016/j.neuron.2016.06.033.

Article  CAS  Google Scholar 

Tsodyks, M., Pawelzik, K., & Markram, H. (1998). Neural networks with dynamic synapses. Neural Computation, 10(4), 821–835.

Article  CAS  Google Scholar 

Virginia, G. M., Kelly, J. G., & Hawken, M. J. (2019). Major feedforward thalamic input into layer 4C of primary visual cortex in primate. Cerebral Cortex, 29(1), 134–149. https://doi.org/10.1093/cercor/bhx311

Article  Google Scholar 

Wang, X. J., Rinzel, J., & Rogawski, M. A. (1991). A model of the t-type calcium current and the low-threshold spike in thalamic neurons. Journal of Neurophysiology, 66(3), 839–850.

Article  CAS  Google Scholar 

Wilson, H. R. (1999). Simplified dynamics of human and mammalian neocortical neurons. Journal of Theoretical Biology, 200(4), 375–388.

Article  CAS  Google Scholar 

Zucker, R. S., & Regehr, W. G. (2002). Short-term synaptic plasticity. Annual Review of Physiology, 64, 355–405.

Article  CAS  Google Scholar 

留言 (0)

沒有登入
gif