Photon-counting detector coronary CT angiography: impact of virtual monoenergetic imaging and iterative reconstruction on image quality

1. Knuuti J, , Wijns W, , Saraste A, , Capodanno D, , Barbato E, , Funck-Brentano C, , et al.. 2019 ESC guidelines for the diagnosis and management of chronic coronary syndromes. Eur Heart J 2020; 41: 407–77. doi: https://doi.org/10.1093/eurheartj/ehz425

2. Arendt CT, , Czwikla R, , Lenga L, , Wichmann JL, , Albrecht MH, , Booz C, , et al.. Improved coronary artery contrast enhancement using noise-optimised virtual monoenergetic imaging from dual-source dual-energy computed tomography. Eur J Radiol 2020; 122: 108666: S0720-048X(19)30316-X. doi: https://doi.org/10.1016/j.ejrad.2019.108666

3. Huang X, , Gao S, , Ma Y, , Lu X, , Jia Z, , Hou Y. The optimal monoenergetic spectral image level of coronary computed tomography (CT) angiography on a dual-layer spectral detector CT with half-dose contrast media. Quant Imaging Med Surg 2020; 10: 592–603. doi: https://doi.org/10.21037/qims.2020.02.17

4. Ruzsics B, , Lee H, , Zwerner PL, , Gebregziabher M, , Costello P, , Schoepf UJ. Dual-Energy CT of the heart for diagnosing coronary artery stenosis and myocardial ischemia-initial experience. Eur Radiol 2008; 18: 2414–24. doi: https://doi.org/10.1007/s00330-008-1022-x

5. Van Hedent S, , Große Hokamp N, , Kessner R, , Gilkeson R, , Ros PR, , Gupta A. Effect of virtual monoenergetic images from spectral detector computed tomography on coronary calcium blooming. J Comput Assist Tomogr 2018; 42: 912–18. doi: https://doi.org/10.1097/RCT.0000000000000811

6. Kok M, , Mihl C, , Hendriks BMF, , Altintas S, , Kietselaer BLJH, , Wildberger JE, , et al.. Optimizing contrast media application in coronary CT angiography at lower tube voltage: evaluation in a circulation phantom and sixty patients. Eur J Radiol 2016; 85: 1068–74: S0720-048X(16)30097-3. doi: https://doi.org/10.1016/j.ejrad.2016.03.022

7. Noda Y, , Nakamura F, , Yasuda N, , Miyoshi T, , Kawai N, , Kawada H, , et al.. Advantages and disadvantages of single-source dual-energy whole-body CT angiography with 50 % reduced iodine dose at 40 keV reconstruction. Br J Radiol 2021; 94: 20201276: 20201276. doi: https://doi.org/10.1259/bjr.20201276

8. Noda Y, , Kawai N, , Kawamura T, , Kobori A, , Miyase R, , Iwashima K, , et al.. Radiation and iodine dose reduced thoraco-abdomino-pelvic dual-energy CT at 40 kev reconstructed with deep learning image reconstruction. [BJR 20211163]. Br J Radiol 2022; 95(1134): 20211163. doi: https://doi.org/10.1259/bjr.20211163

9. Raju R, , Thompson AG, , Lee K, , Precious B, , Yang T-H, , Berger A, , et al.. Reduced iodine load with CT coronary angiography using dual-energy imaging: a prospective randomized trial compared with standard coronary CT angiography. J Cardiovasc Comput Tomogr 2014; 8: 282–88: S1934-5925(14)00153-1. doi: https://doi.org/10.1016/j.jcct.2014.06.003

10. Rajendran K, , Petersilka M, , Henning A, , Shanblatt ER, , Schmidt B, , Flohr TG, , et al.. First clinical photon-counting detector CT system: technical evaluation. Radiology 2022; 303: 130–38. doi: https://doi.org/10.1148/radiol.212579

11. Euler A, , Higashigaito K, , Mergen V, , Sartoretti T, , Zanini B, , Schmidt B, , et al.. High-pitch photon-counting detector computed tomography angiography of the aorta: intraindividual comparison to energy-integrating detector computed tomography at equal radiation dose. Invest Radiol 2022; 57: 115–21. doi: https://doi.org/10.1097/RLI.0000000000000816

12. Decker JA, , Bette S, , Lubina N, , Rippel K, , Braun F, , Risch F, , et al.. Low-Dose CT of the abdomen: initial experience on a novel photon-counting detector CT and comparison with energy-integrating detector CT. Eur J Radiol 2022; 148: 110181: S0720-048X(22)00031-6. doi: https://doi.org/10.1016/j.ejrad.2022.110181

13. Bette SJ, , Braun FM, , Haerting M, , Decker JA, , Luitjens JH, , Scheurig-Muenkler C, , et al.. Visualization of bone details in a novel photon-counting dual-source CT scanner-comparison with energy-integrating CT. Eur Radiol 2022; 32: 2930–36. doi: https://doi.org/10.1007/s00330-021-08441-4

14. Rajendran K, , Petersilka M, , Henning A, , Shanblatt E, , Marsh J Jr, , Thorne J, , et al.. Full field-of-view, high-resolution, photon-counting detector CT: technical assessment and initial patient experience. Phys Med Biol 2021; 66: 205019. doi: https://doi.org/10.1088/1361-6560/ac155e

15. Boccalini S, , Si-Mohamed SA, , Lacombe H, , Diaw A, , Varasteh M, , Rodesch P-A, , et al.. First in-human results of computed tomography angiography for coronary stent assessment with a spectral photon counting computed tomography. Invest Radiol 2022; 57: 212–21. doi: https://doi.org/10.1097/RLI.0000000000000835

16. Mergen V, , Ried E, , Allmendinger T, , Sartoretti T, , Higashigaito K, , Manka R, , et al.. Epicardial adipose tissue attenuation and fat attenuation index: phantom study and in vivo measurements with photon-counting detector CT. AJR Am J Roentgenol 2022; 218: 822–29. doi: https://doi.org/10.2214/AJR.21.26930

17. Mergen V, , Sartoretti T, , Klotz E, , Schmidt B, , Jungblut L, , Higashigaito K, , et al.. Extracellular volume quantification with cardiac late enhancement scanning using dual-source photon-counting detector CT. Invest Radiol 2022; 57: 406–11. doi: https://doi.org/10.1097/RLI.0000000000000851

18. Mergen V, , Higashigaito K, , Allmendinger T, , Manka R, , Euler A, , Alkadhi H, , et al.. Tube voltage-independent coronary calcium scoring on a first-generation dual-source photon-counting CT-a proof-of-principle phantom study. Int J Cardiovasc Imaging 2021. doi: https://doi.org/10.1007/s10554-021-02466-y

19. Grant KL, , Flohr TG, , Krauss B, , Sedlmair M, , Thomas C, , Schmidt B. Assessment of an advanced image-based technique to calculate virtual monoenergetic computed tomographic images from a dual-energy examination to improve contrast-to-noise ratio in examinations using iodinated contrast media. Invest Radiol 2014; 49: 586–92. doi: https://doi.org/10.1097/RLI.0000000000000060

20. Albrecht MH, , Trommer J, , Wichmann JL, , Scholtz J-E, , Martin SS, , Lehnert T, , et al.. Comprehensive comparison of virtual monoenergetic and linearly blended reconstruction techniques in third-generation dual-source dual-energy computed tomography angiography of the thorax and abdomen. Invest Radiol 2016; 51: 582–90. doi: https://doi.org/10.1097/RLI.0000000000000272

21. Greffier J, , Si-Mohamed S, , Guiu B, , Frandon J, , Loisy M, , de Oliveira F, , et al.. Comparison of virtual monoenergetic imaging between a rapid kilovoltage switching dual-energy computed tomography with deep-learning and four dual-energy CTs with iterative reconstruction. Quant Imaging Med Surg 2022; 12: 1149–62. doi: https://doi.org/10.21037/qims-21-708

22. Laurent G, , Villani N, , Hossu G, , Rauch A, , Noël A, , Blum A, , et al.. Full model-based iterative reconstruction (MBIR) in abdominal CT increases objective image quality, but decreases subjective acceptance. Eur Radiol 2019; 29: 4016–25. doi: https://doi.org/10.1007/s00330-018-5988-8

23. McCollough CH, , Yu L, , Kofler JM, , Leng S, , Zhang Y, , Li Z, , et al.. Degradation of CT low-contrast spatial resolution due to the use of iterative reconstruction and reduced dose levels. Radiology 2015; 276: 499–506. doi: https://doi.org/10.1148/radiol.15142047

24. Racine D, , Becce F, , Viry A, , Monnin P, , Thomsen B, , Verdun FR, , et al.. Task-based characterization of a deep learning image reconstruction and comparison with filtered back-projection and a partial model-based iterative reconstruction in abdominal CT: a phantom study. Phys Med 2020; 76: 28–37: S1120-1797(20)30137-X. doi: https://doi.org/10.1016/j.ejmp.2020.06.004

25. Morsbach F, , Desbiolles L, , Raupach R, , Leschka S, , Schmidt B, , Alkadhi H. Noise texture deviation: a measure for quantifying artifacts in computed tomography images with iterative reconstructions. Invest Radiol 2017; 52: 87–94. doi: https://doi.org/10.1097/RLI.0000000000000312

26. Mergen V, , Sartoretti T, , Baer-Beck M, , Schmidt B, , Petersilka M, , Wildberger JE, , et al.. Ultra-high-resolution coronary CT angiography with photon-counting detector CT: feasibility and image characterization. Invest Radiol 2022; 57: 780–88. doi: https://doi.org/10.1097/RLI.0000000000000897

27. Mergen V, , Eberhard M, , Manka R, , Euler A, , Alkadhi H. First in-human quantitative plaque characterization with ultra-high resolution coronary photon-counting CT angiography. Front Cardiovasc Med 2022; 9: 981012: 981012. doi: https://doi.org/10.3389/fcvm.2022.981012

28. Sartoretti T, , Landsmann A, , Nakhostin D, , Eberhard M, , Roeren C, , Mergen V, , et al.. Quantum iterative reconstruction for abdominal photon-counting detector CT improves image quality. Radiology 2022; 303: 339–48. doi: https://doi.org/10.1148/radiol.211931

29. McDermott MC, , Sartoretti T, , Mihl C, , Pietsch H, , Alkadhi H, , Wildberger JE. Third-Generation cardiovascular phantom: the next generation of preclinical research in diagnostic imaging. Invest Radiol 2022; 57: 834–40. doi: https://doi.org/10.1097/RLI.0000000000000894

30. Sartoretti T, , Eberhard M, , Nowak T, , Gutjahr R, , Jost G, , Pietsch H, , et al.. Photon-Counting multienergy computed tomography with spectrally optimized contrast media for plaque removal and stenosis assessment. Invest Radiol 2021; 56: 563–70. doi: https://doi.org/10.1097/RLI.0000000000000773

31. Sartoretti T, , van Smoorenburg L, , Sartoretti E, , Schwenk Á, , Binkert CA, , Kulcsár Z, , et al.. Ultrafast intracranial vessel imaging with non-cartesian spiral 3-dimensional time-of-flight magnetic resonance angiography at 1.5 T: an in vitro and clinical study in healthy volunteers. Invest Radiol 2020; 55: 293–303. doi: https://doi.org/10.1097/RLI.0000000000000641

32. Rotzinger DC, , Racine D, , Becce F, , Lahoud E, , Erhard K, , Si-Mohamed SA, , et al.. Performance of spectral photon-counting coronary CT angiography and comparison with energy-integrating-detector CT: objective assessment with model observer. Diagnostics (Basel) 2021; 11(12): 2376. doi: https://doi.org/10.3390/diagnostics11122376

33. Gordic S, , Desbiolles L, , Sedlmair M, , Manka R, , Plass A, , Schmidt B, , et al.. Optimizing radiation dose by using advanced modelled iterative reconstruction in high-pitch coronary CT angiography. Eur Radiol 2016; 26: 459–68. doi: https://doi.org/10.1007/s00330-015-3862-5

34. De Santis D, , Caruso D, , Schoepf UJ, , Eid M, , Albrecht MH, , Duguay TM, , et al.. Contrast media injection protocol optimization for dual-energy coronary CT angiography: results from a circulation phantom. Eur Radiol 2018; 28: 3473–81. doi: https://doi.org/10.1007/s00330-018-5308-3

35. Cademartiri F, , Mollet NR, , van der Lugt A, , McFadden EP, , Stijnen T, , de Feyter PJ, , et al.. Intravenous contrast material administration at helical 16-detector row CT coronary angiography: effect of iodine concentration on vascular attenuation. Radiology 2005; 236: 661–65. doi: https://doi.org/10.1148/radiol.2362040468

36. Luan X, , Gao Z, , Sun J, , Chen G, , Song H, , Yao J, , et al.. Feasibility of an ultra-low dose contrast media protocol for coronary CT angiography. Clin Radiol 2022; 77: e705–10: S0009-9260(22)00283-5. doi: https://doi.org/10.1016/j.crad.2022.05.029

37. Steuwe A, , Weber M, , Bethge OT, , Rademacher C, , Boschheidgen M, , Sawicki LM, , et al.. Influence of a novel deep-learning based reconstruction software on the objective and subjective image quality in low-dose abdominal computed tomography. Br J Radiol 2021; 94: 20200677: 20200677. doi: https://doi.org/10.1259/bjr.20200677

38. Mihl C, , Wildberger JE, , Jurencak T, , Yanniello MJ, , Nijssen EC, , Kalafut JF, , et al.. Intravascular enhancement with identical iodine delivery rate using different iodine contrast media in a circulation phantom. Invest Radiol 2013; 48: 813–18. doi: https://doi.org/10.1097/RLI.0b013e31829979e8

留言 (0)

沒有登入
gif