Jayathilake AG, Kadife E, Luwor RB, Nurgali K, Su XQ (2019) Krill oil extract suppresses the proliferation of colorectal cancer cells through activation of caspase 3/9. Nutr Metab (Lond) 16:53. https://doi.org/10.1186/s12986-019-0382-3
van der Wurff IS, von Schacky C, Berge K, Kirschner PA, de Groot RH (2016) A protocol for a randomised controlled trial investigating the effect of increasing Omega-3 index with krill oil supplementation on learning, cognition, behaviour and visual processing in typically developing adolescents. BMJ Open 6(7):e011790. https://doi.org/10.1136/bmjopen-2016-011790
Yang G, Lee J, Lee S, Kwak D, Choe W, Kang I, Kim SS, Ha J (2016) Krill oil supplementation improves dyslipidemia and lowers body weight in mice fed a high-fat diet through activation of amp-activated protein kinase. J Med Food 19(12):1120–1129. https://doi.org/10.1089/jmf.2016.3720
Sung HH, Sinclair AJ, Huynh K, Smith AT, Mellett NA, Meikle PJ, Su XQ (2019) Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: a randomized crossover study. Nutrition 65:191–201. https://doi.org/10.1016/j.nut.2019.03.021
Dai Y, Zhang L, Yan Z, Li Z, Fu M, Xue C, Wang J (2021) A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill (Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice. Food Funct 12(15):6766–6779. https://doi.org/10.1039/d1fo00056j
Liu F, Smith AD, Solano-Aguilar G, Wang TTY, Pham Q, Beshah E, Tang Q, Urban JF Jr, Xue C, Li RW (2020) Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models. Microbiome 8(1):83. https://doi.org/10.1186/s40168-020-00843-8
Zhou L, Wu X, Yang F, Zhang M, Huang R, Liu J (2021) Characterization of molecular species and anti-inflammatory activity of purified phospholipids from Antarctic krill oil. Mar Drugs. https://doi.org/10.3390/md19030124
Suzuki Y, Fukushima M, Sakuraba K, Sawaki K, Sekigawa K (2016) Krill oil improves mild knee joint pain: a randomized control trial. PLoS ONE 11(10):e0162769. https://doi.org/10.1371/journal.pone.0162769
Laslett LL, Antony B, Wluka AE, Hill C, March L, Keen HI, Otahal P, Cicuttini FM, Jones G (2020) KARAOKE: Krill oil versus placebo in the treatment of knee osteoarthritis: protocol for a randomised controlled trial. Trials 21(1):79. https://doi.org/10.1186/s13063-019-3915-1
Rundblad A, Holven KB, Bruheim I, Myhrstad MC, Ulven SM (2018) Effects of fish and krill oil on gene expression in peripheral blood mononuclear cells and circulating markers of inflammation: a randomised controlled trial. J Nutr Sci 7:e10. https://doi.org/10.1017/jns.2018.2
Seto Y, Morizane C, Ueno K, Sato H, Onoue S (2018) Supersaturable self-emulsifying drug delivery system of krill oil with improved oral absorption and hypotriglyceridemic function. J Agric Food Chem 66(21):5352–5358. https://doi.org/10.1021/acs.jafc.8b00693
Konagai C, Yanagimoto K, Hayamizu K, Han L, Tsuji T, Koga Y (2013) Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clin Interv Aging 8:1247–1257. https://doi.org/10.2147/CIA.S50349
Colletti A, Cravotto G, Citi V, Martelli A, Testai L, Cicero AFG (2021) Advances in technologies for highly active omega-3 fatty acids from krill oil: clinical applications. Mar Drugs. https://doi.org/10.3390/md19060306
Murru E, Banni S, Carta G (2013) Nutritional properties of dietary omega-3-enriched phospholipids. Biomed Res Int 2013:965417. https://doi.org/10.1155/2013/965417
Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA (2019) Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. https://doi.org/10.3390/nu11010089
Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Shen Q (2020) Electric soldering iron ionization mass spectrometry based lipidomics for in situ monitoring fish oil oxidation characteristics during storage. J Agric Food Chem 68(7):2240–2248. https://doi.org/10.1021/acs.jafc.9b06406
Ulven SM, Holven KB (2015) Comparison of bioavailability of krill oil versus fish oil and health effect. Vasc Health Risk Manag 11:511–524. https://doi.org/10.2147/VHRM.S85165
Tsuchiya Y, Ueda H, Yanagimoto K, Kato A, Ochi E (2021) 4-week eicosapentaenoic acid-rich fish oil supplementation partially protects muscular damage following eccentric contractions. J Int Soc Sports Nutr 18(1):18. https://doi.org/10.1186/s12970-021-00411-x
Jakeman JR, Lambrick DM, Wooley B, Babraj JA, Faulkner JA (2017) Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol 117(3):575–582. https://doi.org/10.1007/s00421-017-3543-y
Storsve AB, Johnsen L, Nyborg C, Melau J, Hisdal J, Burri L (2020) Effects of krill oil and race distance on serum choline and choline metabolites in triathletes: a field study. Front Nutr 7:133. https://doi.org/10.3389/fnut.2020.00133
Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP (2016) Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med 15(1):176–183
Macartney MJ, Hingley L, Brown MA, Peoples GE, McLennan PL (2014) Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br J Nutr 112(12):1984–1992. https://doi.org/10.1017/S0007114514003146
Beekhuizen KS, Davis MD, Kolber MJ, Cheng MS (2009) Test-retest reliability and minimal detectable change of the hexagon agility test. J Strength Cond Res 23(7):2167–2171. https://doi.org/10.1519/JSC.0b013e3181b439f0
Markus I, Constantini K, Hoffman JR, Bartolomei S, Gepner Y (2021) Exercise-induced muscle damage: mechanism, assessment and nutritional factors to accelerate recovery. Eur J Appl Physiol 121(4):969–992. https://doi.org/10.1007/s00421-020-04566-4
Tee JC, Bosch AN, Lambert MI (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med 37(10):827–836. https://doi.org/10.2165/00007256-200737100-00001
Kayani AC, Morton JP, McArdle A (2008) The exercise-induced stress response in skeletal muscle: failure during aging. Appl Physiol Nutr Metab 33(5):1033–1041. https://doi.org/10.1139/H08-089
Peake JM (2019) Recovery after exercise: what is the current state of play? Curr Opin Physio 10:17–26. https://doi.org/10.1016/j.cophys.2019.03.007
Owens DJ, Twist C, Cobley JN, Howatson G, Close GL (2019) Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 19(1):71–85. https://doi.org/10.1080/17461391.2018.1505957
Kyriakidou Y, Wood C, Ferrier C, Dolci A, Elliott B (2021) The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J Int Soc Sports Nutr 18(1):9. https://doi.org/10.1186/s12970-020-00405-1
Mickleborough TD, Sinex JA, Platt D, Chapman RF, Hirt M (2015) The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr 12:10. https://doi.org/10.1186/s12970-015-0073-z
Tartibian B, Maleki BH, Abbasi A (2009) The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clin J Sport Med 19(2):115–119. https://doi.org/10.1097/JSM.0b013e31819b51b3
Tinsley GM, Gann JJ, Huber SR, Andre TL, La Bounty PM, Bowden RG, Gordon PM, Grandjean PW (2017) Effects of Fish oil supplementation on postresistance exercise muscle soreness. J Diet Suppl 14(1):89–100. https://doi.org/10.1080/19390211.2016.1205701
VanDusseldorp TA, Escobar KA, Johnson KE, Stratton MT, Moriarty T, Kerksick CM, Mangine GT, Holmes AJ, Lee M, Endito MR, Mermier CM (2020) Impact of varying dosages of fish oil on recovery and soreness following eccentric exercise. Nutrients. https://doi.org/10.3390/nu12082246
Skarpańska-Stejnborn A, Pilaczyńska-Szcześniak Ł, Basta P, Foriasz J, Arlet J (2010) Effects of supplementation with neptune krill oil (Euphasia Superba) on selected redox parameters and pro-inflammatory markers in athletes during exhaustive exercise. J Hum Kinet 25(2010):49–57. https://doi.org/10.2478/v10078-010-0031-4
Da Boit M, Mastalurova I, Brazaite G, McGovern N, Thompson K, Gray SR (2015) The effect of krill oil supplementation on exercise performance and markers of immune function. PLoS ONE 10(9):e0139174. https://doi.org/10.1371/journal.pone.0139174
Che H, Li H, Song L, Dong X, Yang X, Zhang T, Wang Y, Xie W (2021) Orally administered DHA-enriched phospholipids and DHA-enriched triglyceride relieve oxidative stress, improve intestinal barrier, modulate inflammatory cytokine and gut microbiota, and meliorate inflammatory responses in the brain in dextran sodium sulfate induced colitis in mice. Mol Nutr Food Res 65(15):e2000986. https://doi.org/10.1002/mnfr.202000986
Delsmann MM, Stürznickel J, Amling M, Ueblacker P, Rolvien T (2021) Musculoskeletal laboratory diagnostics in competitive sport. Orthopade 50(9):700–712. https://doi.org/10.1007/s00132-021-04072-1
Helge JW, Ayre KJ, Hulbert AJ, Kiens B, Storlien LH (1999) Regular exercise modulates muscle membrane phospholipid profile in rats. J Nutr 129(9):1636–1642. https://doi.org/10.1093/jn/129.9.1636
Kobayashi A, Ito A, Shirakawa I, Tamura A, Tomono S, Shindou H, Hedde PN, Tanaka M, Tsuboi N, Ishimoto T, Akashi-Takamura S, Maruyama S, Suganami T (2021) Dietary supplementation with eicosapentaenoic acid inhibits plasma cell differentiation and attenuates lupus autoimmunity. Front Immunol 12:650856. https://doi.org/10.3389/fimmu.2021.650856
Sherratt SCR, Shrivastava S, Jacob RF, Chattopadhyay A, Mason RP (2016) Docosahexaenoic acid (DHA), but not eicosapentaenoic acid (EPA) increases both membrane fluidity and cholesterol crystalline domain formation in lipid vesicles. Biophys J. https://doi.org/10.1016/j.bpj.2015.11.3115
Wu T, Geigerman C, Lee YS, Wander RC (2002) Enrichment of LDL with EPA and DHA decreased oxidized LDL-induced apoptosis in U937 cells. Lipids 37(8):789–796. https://doi.org/10.1007/s11745-002-0962-7
McGlory C, Miotto P, Gorissen S, Kamal M, Bahniwal R, Hector A, Chabowski A, Holloway G, Phillips S (2019) OR26: omega 3 fatty acid supplementation attenuates muscle disuse atrophy during two weeks of unilateral leg immobilization in young women. Clin Nutr. https://doi.org/10.1016/s0261-5614(19)32498-7
Jing W, Bi Y, Wang G, Zeng S, Han L, Yang H, Wang N, Zhao Y (2021) Krill oil perturbs proliferation and migration of mouse colon cancer cells in vitro by impeding extracellular signal-regulated protein kinase signaling pathway. Lipids 56(2):141–153. https://doi.org/10.1002/lipd.12281
Patten GS, Abeywardena MY, McMurchie EJ, Jahangiri A (2002) Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J Nutr 132(9):2506–2513. https://doi.org/10.1093/jn/132.9.2506
留言 (0)