Impact of Antarctic krill oil supplementation on skeletal muscle injury recovery after resistance exercise

Jayathilake AG, Kadife E, Luwor RB, Nurgali K, Su XQ (2019) Krill oil extract suppresses the proliferation of colorectal cancer cells through activation of caspase 3/9. Nutr Metab (Lond) 16:53. https://doi.org/10.1186/s12986-019-0382-3

Article  Google Scholar 

van der Wurff IS, von Schacky C, Berge K, Kirschner PA, de Groot RH (2016) A protocol for a randomised controlled trial investigating the effect of increasing Omega-3 index with krill oil supplementation on learning, cognition, behaviour and visual processing in typically developing adolescents. BMJ Open 6(7):e011790. https://doi.org/10.1136/bmjopen-2016-011790

Article  Google Scholar 

Yang G, Lee J, Lee S, Kwak D, Choe W, Kang I, Kim SS, Ha J (2016) Krill oil supplementation improves dyslipidemia and lowers body weight in mice fed a high-fat diet through activation of amp-activated protein kinase. J Med Food 19(12):1120–1129. https://doi.org/10.1089/jmf.2016.3720

Article  Google Scholar 

Sung HH, Sinclair AJ, Huynh K, Smith AT, Mellett NA, Meikle PJ, Su XQ (2019) Differential plasma postprandial lipidomic responses to krill oil and fish oil supplementations in women: a randomized crossover study. Nutrition 65:191–201. https://doi.org/10.1016/j.nut.2019.03.021

Article  Google Scholar 

Dai Y, Zhang L, Yan Z, Li Z, Fu M, Xue C, Wang J (2021) A low proportion n-6/n-3 PUFA diet supplemented with Antarctic krill (Euphausia superba) oil protects against osteoarthritis by attenuating inflammation in ovariectomized mice. Food Funct 12(15):6766–6779. https://doi.org/10.1039/d1fo00056j

Article  Google Scholar 

Liu F, Smith AD, Solano-Aguilar G, Wang TTY, Pham Q, Beshah E, Tang Q, Urban JF Jr, Xue C, Li RW (2020) Mechanistic insights into the attenuation of intestinal inflammation and modulation of the gut microbiome by krill oil using in vitro and in vivo models. Microbiome 8(1):83. https://doi.org/10.1186/s40168-020-00843-8

Article  Google Scholar 

Zhou L, Wu X, Yang F, Zhang M, Huang R, Liu J (2021) Characterization of molecular species and anti-inflammatory activity of purified phospholipids from Antarctic krill oil. Mar Drugs. https://doi.org/10.3390/md19030124

Article  Google Scholar 

Suzuki Y, Fukushima M, Sakuraba K, Sawaki K, Sekigawa K (2016) Krill oil improves mild knee joint pain: a randomized control trial. PLoS ONE 11(10):e0162769. https://doi.org/10.1371/journal.pone.0162769

Article  Google Scholar 

Laslett LL, Antony B, Wluka AE, Hill C, March L, Keen HI, Otahal P, Cicuttini FM, Jones G (2020) KARAOKE: Krill oil versus placebo in the treatment of knee osteoarthritis: protocol for a randomised controlled trial. Trials 21(1):79. https://doi.org/10.1186/s13063-019-3915-1

Article  Google Scholar 

Rundblad A, Holven KB, Bruheim I, Myhrstad MC, Ulven SM (2018) Effects of fish and krill oil on gene expression in peripheral blood mononuclear cells and circulating markers of inflammation: a randomised controlled trial. J Nutr Sci 7:e10. https://doi.org/10.1017/jns.2018.2

Article  Google Scholar 

Seto Y, Morizane C, Ueno K, Sato H, Onoue S (2018) Supersaturable self-emulsifying drug delivery system of krill oil with improved oral absorption and hypotriglyceridemic function. J Agric Food Chem 66(21):5352–5358. https://doi.org/10.1021/acs.jafc.8b00693

Article  Google Scholar 

Konagai C, Yanagimoto K, Hayamizu K, Han L, Tsuji T, Koga Y (2013) Effects of krill oil containing n-3 polyunsaturated fatty acids in phospholipid form on human brain function: a randomized controlled trial in healthy elderly volunteers. Clin Interv Aging 8:1247–1257. https://doi.org/10.2147/CIA.S50349

Article  Google Scholar 

Colletti A, Cravotto G, Citi V, Martelli A, Testai L, Cicero AFG (2021) Advances in technologies for highly active omega-3 fatty acids from krill oil: clinical applications. Mar Drugs. https://doi.org/10.3390/md19060306

Article  Google Scholar 

Murru E, Banni S, Carta G (2013) Nutritional properties of dietary omega-3-enriched phospholipids. Biomed Res Int 2013:965417. https://doi.org/10.1155/2013/965417

Article  Google Scholar 

Tocher DR, Betancor MB, Sprague M, Olsen RE, Napier JA (2019) Omega-3 long-chain polyunsaturated fatty acids, EPA and DHA: bridging the gap between supply and demand. Nutrients. https://doi.org/10.3390/nu11010089

Article  Google Scholar 

Song G, Li L, Wang H, Zhang M, Yu X, Wang J, Shen Q (2020) Electric soldering iron ionization mass spectrometry based lipidomics for in situ monitoring fish oil oxidation characteristics during storage. J Agric Food Chem 68(7):2240–2248. https://doi.org/10.1021/acs.jafc.9b06406

Article  Google Scholar 

Ulven SM, Holven KB (2015) Comparison of bioavailability of krill oil versus fish oil and health effect. Vasc Health Risk Manag 11:511–524. https://doi.org/10.2147/VHRM.S85165

Article  Google Scholar 

Tsuchiya Y, Ueda H, Yanagimoto K, Kato A, Ochi E (2021) 4-week eicosapentaenoic acid-rich fish oil supplementation partially protects muscular damage following eccentric contractions. J Int Soc Sports Nutr 18(1):18. https://doi.org/10.1186/s12970-021-00411-x

Article  Google Scholar 

Jakeman JR, Lambrick DM, Wooley B, Babraj JA, Faulkner JA (2017) Effect of an acute dose of omega-3 fish oil following exercise-induced muscle damage. Eur J Appl Physiol 117(3):575–582. https://doi.org/10.1007/s00421-017-3543-y

Article  Google Scholar 

Storsve AB, Johnsen L, Nyborg C, Melau J, Hisdal J, Burri L (2020) Effects of krill oil and race distance on serum choline and choline metabolites in triathletes: a field study. Front Nutr 7:133. https://doi.org/10.3389/fnut.2020.00133

Article  Google Scholar 

Corder KE, Newsham KR, McDaniel JL, Ezekiel UR, Weiss EP (2016) Effects of short-term docosahexaenoic acid supplementation on markers of inflammation after eccentric strength exercise in women. J Sports Sci Med 15(1):176–183

Google Scholar 

Macartney MJ, Hingley L, Brown MA, Peoples GE, McLennan PL (2014) Intrinsic heart rate recovery after dynamic exercise is improved with an increased omega-3 index in healthy males. Br J Nutr 112(12):1984–1992. https://doi.org/10.1017/S0007114514003146

Article  Google Scholar 

Beekhuizen KS, Davis MD, Kolber MJ, Cheng MS (2009) Test-retest reliability and minimal detectable change of the hexagon agility test. J Strength Cond Res 23(7):2167–2171. https://doi.org/10.1519/JSC.0b013e3181b439f0

Article  Google Scholar 

Markus I, Constantini K, Hoffman JR, Bartolomei S, Gepner Y (2021) Exercise-induced muscle damage: mechanism, assessment and nutritional factors to accelerate recovery. Eur J Appl Physiol 121(4):969–992. https://doi.org/10.1007/s00421-020-04566-4

Article  Google Scholar 

Tee JC, Bosch AN, Lambert MI (2007) Metabolic consequences of exercise-induced muscle damage. Sports Med 37(10):827–836. https://doi.org/10.2165/00007256-200737100-00001

Article  Google Scholar 

Kayani AC, Morton JP, McArdle A (2008) The exercise-induced stress response in skeletal muscle: failure during aging. Appl Physiol Nutr Metab 33(5):1033–1041. https://doi.org/10.1139/H08-089

Article  Google Scholar 

Peake JM (2019) Recovery after exercise: what is the current state of play? Curr Opin Physio 10:17–26. https://doi.org/10.1016/j.cophys.2019.03.007

Article  Google Scholar 

Owens DJ, Twist C, Cobley JN, Howatson G, Close GL (2019) Exercise-induced muscle damage: what is it, what causes it and what are the nutritional solutions? Eur J Sport Sci 19(1):71–85. https://doi.org/10.1080/17461391.2018.1505957

Article  Google Scholar 

Kyriakidou Y, Wood C, Ferrier C, Dolci A, Elliott B (2021) The effect of Omega-3 polyunsaturated fatty acid supplementation on exercise-induced muscle damage. J Int Soc Sports Nutr 18(1):9. https://doi.org/10.1186/s12970-020-00405-1

Article  Google Scholar 

Mickleborough TD, Sinex JA, Platt D, Chapman RF, Hirt M (2015) The effects PCSO-524®, a patented marine oil lipid and omega-3 PUFA blend derived from the New Zealand green lipped mussel (Perna canaliculus), on indirect markers of muscle damage and inflammation after muscle damaging exercise in untrained men: a randomized, placebo controlled trial. J Int Soc Sports Nutr 12:10. https://doi.org/10.1186/s12970-015-0073-z

Article  Google Scholar 

Tartibian B, Maleki BH, Abbasi A (2009) The effects of ingestion of omega-3 fatty acids on perceived pain and external symptoms of delayed onset muscle soreness in untrained men. Clin J Sport Med 19(2):115–119. https://doi.org/10.1097/JSM.0b013e31819b51b3

Article  Google Scholar 

Tinsley GM, Gann JJ, Huber SR, Andre TL, La Bounty PM, Bowden RG, Gordon PM, Grandjean PW (2017) Effects of Fish oil supplementation on postresistance exercise muscle soreness. J Diet Suppl 14(1):89–100. https://doi.org/10.1080/19390211.2016.1205701

Article  Google Scholar 

VanDusseldorp TA, Escobar KA, Johnson KE, Stratton MT, Moriarty T, Kerksick CM, Mangine GT, Holmes AJ, Lee M, Endito MR, Mermier CM (2020) Impact of varying dosages of fish oil on recovery and soreness following eccentric exercise. Nutrients. https://doi.org/10.3390/nu12082246

Article  Google Scholar 

Skarpańska-Stejnborn A, Pilaczyńska-Szcześniak Ł, Basta P, Foriasz J, Arlet J (2010) Effects of supplementation with neptune krill oil (Euphasia Superba) on selected redox parameters and pro-inflammatory markers in athletes during exhaustive exercise. J Hum Kinet 25(2010):49–57. https://doi.org/10.2478/v10078-010-0031-4

Article  Google Scholar 

Da Boit M, Mastalurova I, Brazaite G, McGovern N, Thompson K, Gray SR (2015) The effect of krill oil supplementation on exercise performance and markers of immune function. PLoS ONE 10(9):e0139174. https://doi.org/10.1371/journal.pone.0139174

Article  Google Scholar 

Che H, Li H, Song L, Dong X, Yang X, Zhang T, Wang Y, Xie W (2021) Orally administered DHA-enriched phospholipids and DHA-enriched triglyceride relieve oxidative stress, improve intestinal barrier, modulate inflammatory cytokine and gut microbiota, and meliorate inflammatory responses in the brain in dextran sodium sulfate induced colitis in mice. Mol Nutr Food Res 65(15):e2000986. https://doi.org/10.1002/mnfr.202000986

Article  Google Scholar 

Delsmann MM, Stürznickel J, Amling M, Ueblacker P, Rolvien T (2021) Musculoskeletal laboratory diagnostics in competitive sport. Orthopade 50(9):700–712. https://doi.org/10.1007/s00132-021-04072-1

Article  Google Scholar 

Helge JW, Ayre KJ, Hulbert AJ, Kiens B, Storlien LH (1999) Regular exercise modulates muscle membrane phospholipid profile in rats. J Nutr 129(9):1636–1642. https://doi.org/10.1093/jn/129.9.1636

Article  Google Scholar 

Kobayashi A, Ito A, Shirakawa I, Tamura A, Tomono S, Shindou H, Hedde PN, Tanaka M, Tsuboi N, Ishimoto T, Akashi-Takamura S, Maruyama S, Suganami T (2021) Dietary supplementation with eicosapentaenoic acid inhibits plasma cell differentiation and attenuates lupus autoimmunity. Front Immunol 12:650856. https://doi.org/10.3389/fimmu.2021.650856

Article  Google Scholar 

Sherratt SCR, Shrivastava S, Jacob RF, Chattopadhyay A, Mason RP (2016) Docosahexaenoic acid (DHA), but not eicosapentaenoic acid (EPA) increases both membrane fluidity and cholesterol crystalline domain formation in lipid vesicles. Biophys J. https://doi.org/10.1016/j.bpj.2015.11.3115

Article  Google Scholar 

Wu T, Geigerman C, Lee YS, Wander RC (2002) Enrichment of LDL with EPA and DHA decreased oxidized LDL-induced apoptosis in U937 cells. Lipids 37(8):789–796. https://doi.org/10.1007/s11745-002-0962-7

Article  Google Scholar 

McGlory C, Miotto P, Gorissen S, Kamal M, Bahniwal R, Hector A, Chabowski A, Holloway G, Phillips S (2019) OR26: omega 3 fatty acid supplementation attenuates muscle disuse atrophy during two weeks of unilateral leg immobilization in young women. Clin Nutr. https://doi.org/10.1016/s0261-5614(19)32498-7

Article  Google Scholar 

Jing W, Bi Y, Wang G, Zeng S, Han L, Yang H, Wang N, Zhao Y (2021) Krill oil perturbs proliferation and migration of mouse colon cancer cells in vitro by impeding extracellular signal-regulated protein kinase signaling pathway. Lipids 56(2):141–153. https://doi.org/10.1002/lipd.12281

Article  Google Scholar 

Patten GS, Abeywardena MY, McMurchie EJ, Jahangiri A (2002) Dietary fish oil increases acetylcholine- and eicosanoid-induced contractility of isolated rat ileum. J Nutr 132(9):2506–2513. https://doi.org/10.1093/jn/132.9.2506

Article  Google Scholar 

留言 (0)

沒有登入
gif