Variations of the spontaneous electrical activities of the neuronal networks imposed by the exposure of electromagnetic radiations using computational map-based modeling

Abarbanel, H. D. I., Huerta, R., Rabinovich, M. I., Rulkov, N. F., Rowat, P. F., & Selverston, A. I. (1996). Synchronized Action of Synaptically Coupled Chaotic Model Neurons. Neural Computation, 8(8), 1567–1602. https://doi.org/10.1162/NECO.1996.8.8.1567

Article  CAS  Google Scholar 

Alekseev, S. I., Gordiienko, O. V., Radzievsky, A. A., & Ziskin, M. C. (2010). Millimeter wave effects on electrical responses of the sural nerve invivo. Bioelectromagnetics, 31(3), 180–190. https://doi.org/10.1002/bem.20547

Article  Google Scholar 

An, X., & Qiao, S. (2021). The hidden, period-adding, mixed-mode oscillations and control in a HR neuron under electromagnetic induction. Chaos, Solitons and Fractals, 143, 110587. https://doi.org/10.1016/j.chaos.2020.110587

Article  Google Scholar 

Bashkirtseva, I. A., Ryashko, L. B., & Pisarchik, A. N. (2020). Ring of map-based neural oscillators: From order to chaos and back. Chaos, Solitons and Fractals, 136, 109830. https://doi.org/10.1016/j.chaos.2020.109830

Article  Google Scholar 

Bodewein, L., Schmiedchen, K., Dechent, D., Stunder, D., Graefrath, D., Winter, L., et al. (2019). Systematic review on the biological effects of electric, magnetic and electromagnetic fields in the intermediate frequency range (300 Hz to 1 MHz). Environmental Research. Academic Press Inc. https://doi.org/10.1016/j.envres.2019.01.015

Bortolotto, G. S., Stenzinger, R. V., & Tragtenberg, M. H. R. (2019). Electromagnetic induction on a map-based action potential model. Nonlinear Dynamics, 95(1), 433–444. https://doi.org/10.1007/s11071-018-4574-6

Article  Google Scholar 

Cao, H., & Sanjuán, M. A. F. (2009). A mechanism for elliptic-like bursting and synchronization of bursts in a map-based neuron network. Cognitive Processing, 10(1 SUPPL.), 23–31. https://doi.org/10.1007/s10339-008-0222-2

Article  Google Scholar 

Courbage, M., & Nekorkin, V. I. (2010). MAP BASED MODELS IN NEURODYNAMICS. International Journal of Bifurcation and Chaos, 20(6), 1631–1651. https://doi.org/10.1142/S0218127410026733

Article  Google Scholar 

Courbage, M., Nekorkin, V. I., & Vdovin, L. V. (2007). Chaotic oscillations in a map-based model of neural activity. Chaos, 17(4). https://doi.org/10.1063/1.2795435

Dipalo, M., Amin, H., Lovato, L., Moia, F., Caprettini, V., Messina, G. C., et al. (2017). Intracellular and Extracellular Recording of Spontaneous Action Potentials in Mammalian Neurons and Cardiac Cells with 3D Plasmonic Nanoelectrodes. Nano Letters, 17(6), 3932–3939. https://doi.org/10.1021/ACS.NANOLETT.7B01523

Article  CAS  Google Scholar 

Friesen, W. O. (1989). Neuronal control of leech swimming movements. Journal of Comparative Physiology A 1989 166:2, 166(2), 205–215. https://doi.org/10.1007/BF00193465

Ge, M., Lu, L., Xu, Y., Mamatimin, R., Pei, Q., & Jia, Y. (2020). Vibrational mono-/bi-resonance and wave propagation in FitzHugh–Nagumo neural systems under electromagnetic induction. Chaos, Solitons and Fractals. https://doi.org/10.1016/j.chaos.2020.109645

Article  Google Scholar 

Girardi-Schappo, M., Tragtenberg, M. H. R., & Kinouchi, O. (2013). A brief history of excitable map-based neurons and neural networks. Journal of Neuroscience Methods, 220(2), 116–130. https://doi.org/10.1016/j.jneumeth.2013.07.014

Article  CAS  Google Scholar 

Gramowski-Voß, A., Schwertle, H.-J., Pielka, A.-M., Schultz, L., Steder, A., Jügelt, K., et al. (2015). Enhancement of Cortical Network Activity in vitro and Promotion of GABAergic Neurogenesis by Stimulation with an Electromagnetic Field with a 150 MHz Carrier Wave Pulsed with an Alternating 10 and 16 Hz Modulation. Frontiers in Neurology, 0(JUN), 158. https://doi.org/10.3389/FNEUR.2015.00158

Grande García, I. (2007). The evolution of brain and mind: A non-equilibrium thermodynamics approach. Ludus Vitalis, 15(27), 103–125.

Google Scholar 

Gu, X., Olson, E. C., & Spitzer, N. C. (1994). Spontaneous neuronal calcium spikes and waves during early differentiation. Journal of Neuroscience, 14(11 I), 6325–6335. https://doi.org/10.1523/jneurosci.14-11-06325.1994

Ibarz, B., Casado, J. M., & Sanjuán, M. A. F. (2011). Map-based models in neuronal dynamics. Physics Reports, 501(1–2), 1–74. https://doi.org/10.1016/j.physrep.2010.12.003

Article  CAS  Google Scholar 

Kafraj, M. S., Parastesh, F., & Jafari, S. (2020). Firing patterns of an improved Izhikevich neuron model under the effect of electromagnetic induction and noise. Chaos, Solitons & Fractals, 137, 109782. https://doi.org/10.1016/J.CHAOS.2020.109782

Article  Google Scholar 

Latham, P. E., Richmond, B. J., Nirenberg, S., & Nelson, P. G. (2000). Intrinsic dynamics in neuronal networks. II. Experiment. Journal of Neurophysiology, 83(2), 828–835. https://doi.org/10.1152/JN.2000.83.2.828/ASSET/IMAGES/LARGE/9K0200750007.JPEG

Article  CAS  Google Scholar 

Li, J., Liu, S., Liu, W., Yu, Y., & Wu, Y. (2015). Suppression of firing activities in neuron and neurons of network induced by electromagnetic radiation. Nonlinear Dynamics 2015 83:1, 83(1), 801–810. https://doi.org/10.1007/S11071-015-2368-7

Li, K., Bao, H., Li, H., Ma, J., Hua, Z., & Bao, B. (2022a). Memristive Rulkov Neuron Model with Magnetic Induction Effects. IEEE Transactions on Industrial Informatics, 18(3), 1726–1736. https://doi.org/10.1109/TII.2021.3086819

Article  Google Scholar 

Li, T., Wang, G., Yu, D., Ding, Q., & Jia, Y. (2022b). Synchronization mode transitions induced by chaos in modified Morris–Lecar neural systems with weak coupling. Nonlinear Dynamics 2022b 108:3, 108(3), 2611–2625. https://doi.org/10.1007/S11071-022-07318-5

Liu, Y., Sun, Z., Yang, X., & Xu, W. (2021). Rhythmicity and firing modes in modular neuronal network under electromagnetic field. Nonlinear Dynamics, 104(4), 4391–4400. https://doi.org/10.1007/s11071-021-06470-8

Article  Google Scholar 

Luhmann, H. J., Sinning, A., Yang, J.-W., Reyes-Puerta, V., Stüttgen, M. C., Kirischuk, S., & Kilb, W. (2016). Spontaneous Neuronal Activity in Developing Neocortical Networks: From Single Cells to Large-Scale Interactions. Frontiers in Neural Circuits, 10(MAY), 40. https://doi.org/10.3389/FNCIR.2016.00040

Article  Google Scholar 

Lv, M., & Ma, J. (2016). Multiple modes of electrical activities in a new neuron model under electromagnetic radiation. Neurocomputing, 205, 375–381. https://doi.org/10.1016/j.neucom.2016.05.004

Article  Google Scholar 

Lv, M., Wang, C., Ren, G., Ma, J., & Song, X. (2016). Model of electrical activity in a neuron under magnetic flow effect. Nonlinear Dynamics, 85(3), 1479–1490. https://doi.org/10.1007/s11071-016-2773-6

Article  Google Scholar 

Mazzoni, A., Broccard, F. D., Garcia-Perez, E., Bonifazi, P., Ruaro, M. E., & Torre, V. (2007). On the dynamics of the spontaneous activity in neuronal networks. PLoS ONE, 2(5), 439. https://doi.org/10.1371/journal.pone.0000439

Article  CAS  Google Scholar 

Mesbah, S., Moghtadaei, M., Hashemi Golpayegani, M. R., & Towhidkhah, F. (2014). One-dimensional map-based neuron model: A logistic modification. Chaos, Solitons and Fractals, 65, 20–29. https://doi.org/10.1016/j.chaos.2014.04.006

Article  Google Scholar 

Miyawaki, Y., Shinozaki, T., & Okada, M. (2012). Spike suppression in a local cortical circuit induced by transcranial magnetic stimulation. Journal of Computational Neuroscience, 33(2), 405–419. https://doi.org/10.1007/S10827-012-0392-X/FIGURES/7

Article  Google Scholar 

Moshtagh-Khorasani, M., Miller, E. W., & Torre, V. (2013). The spontaneous electrical activity of neurons in leech ganglia. Physiological Reports, 1(5), 89. https://doi.org/10.1002/phy2.89

Article  Google Scholar 

Napoli, A., & Obeid, I. (2016). Comparative Analysis of Human and Rodent Brain Primary Neuronal Culture Spontaneous Activity Using Micro-Electrode Array Technology. Journal of Cellular Biochemistry, 117(3), 559–565. https://doi.org/10.1002/JCB.25312

Article  CAS  Google Scholar 

NF, R. (2001). Regularization of synchronized chaotic bursts. Physical Review Letters, 86(1), 183–186. https://doi.org/10.1103/PHYSREVLETT.86.183

Article  Google Scholar 

Parastesh, F., Azarnoush, H., Jafari, S., Hatef, B., Perc, M., & Repnik, R. (2019). Synchronizability of two neurons with switching in the coupling. Applied Mathematics and Computation, 350, 217–223. https://doi.org/10.1016/J.AMC.2019.01.011

Article  Google Scholar 

Pinto, R. D., Varona, P., Volkovskii, A. R., Szücs, A., Abarbanel, H. D. I., & Rabinovich, M. I. (2000). Synchronous behavior of two coupled electronic neurons. Physical Review E, 62(2), 2644. https://doi.org/10.1103/PhysRevE.62.2644

Article  CAS  Google Scholar 

Qu, J., Wang, R., Yan, C., & Du, Y. (2016). Spatiotemporal Behavior of Small-World Neuronal Networks Using a Map-Based Model. Neural Processing Letters 2016 45:2, 45(2), 689–701. https://doi.org/10.1007/S11063-016-9547-5

Ramakrishnan, B., Mehrabbeik, M., Parastesh, F., Rajagopal, K., & Jafari, S. (2022). A New Memristive Neuron Map Model and Its Network’s Dynamics under Electrochemical Coupling. Electronics, 11(1), 153. https://doi.org/10.3390/ELECTRONICS11010153

Article  Google Scholar 

Rulkov, N. F., Timofeev, I., & Bazhenov, M. (2004). Oscillations in large-scale cortical networks: Map-based model. Journal of Computational Neuroscience, 17(2), 203–223. https://doi.org/10.1023/B:JCNS.0000037683.55688.7e

Article  CAS  Google Scholar 

Shi, X., & Lu, Q. S. (2005). Firing patterns and complete synchronization of coupled Hindmarsh-Rose neurons. Chinese Physics, 14(1), 77. https://doi.org/10.1088/1009-1963/14/1/016

Article  Google Scholar 

Shilnikov, A. L., & Rulkov, N. F. (2003). Origin of chaos in a two-dimensional map modeling spiking-bursting neural activity. International Journal of Bifurcation and Chaos in Applied Sciences and Engineering, 13(11), 3325–3340. https://doi.org/10.1142/S0218127403008521

Article  Google Scholar 

Shuai, J. W., & Durand, D. M. (1999). Phase synchronization in two coupled chaotic neurons. Physics Letters A, 264(4), 289–297. https://doi.org/10.1016/S0375-9601(99)00816-6

Article  CAS  Google Scholar 

Takembo, C. N., Mvogo, A., Ekobena Fouda, H. P., & Kofané, T. C. (2019). Effect of electromagnetic radiation on the dynamics of spatiotemporal patterns in memristor-based neuronal network. Nonlinear Dynamics, 95(2), 1067–1078. https://doi.org/10.1007/s11071-018-4616-0

Article  Google Scholar 

Usha, K., & Subha, P. A. (2019). Hindmarsh-Rose neuron model with memristors. Bio Systems, 178, 1–9. https://doi.org/10.1016/J.BIOSYSTEMS.2019.01.005

Article  Google Scholar 

van Drongelen, W. (2013). Modeling Neural Activity. ISRN Biomathematics. https://doi.org/10.1155/2013/871472

Article  Google Scholar 

Varona, P., Torres, J. J., Abarbanel, H. D. I., Rabinovich, M. I., & Elson, R. C. (2001). Dynamics of two electrically coupled chaotic neurons: Experimental observations and model analysis. Biological Cybernetics 2001 84:2, 84(2), 91–101. https://doi.org/10.1007/S004220000198

Von Bertalanffy, L. (1950). The theory of open systems in physics and biology. Science, 111(2872), 23–29. https://doi.org/10.1126/science.111.2872.23

Article  Google Scholar 

Wagemakers, A., & Sanjuán, M. A. F. (2013). Electronic circuit implementation of the chaotic Rulkov neuron model. Journal of the Franklin Institute, 350(10), 2901–2910. https://doi.org/10.1016/j.jfranklin.2013.01.026

Article  Google Scholar 

Wang, G., Yang, L., Zhan, X., Li, A., & Jia, Y. (2022). Chaotic resonance in Izhikevich neural network motifs under electromagnetic induction. Nonlinear Dynamics 2021 107:4, 107(4), 3945–3962. https://doi.org/10.1007/S11071-021-07150-3

Wang, G., Yu, D., Ding, Q., Li, T., & Jia, Y. (2021). Effects of electric field on multiple vibrational resonances in Hindmarsh-Rose neuronal systems. Chaos, Solitons & Fractals, 150, 111210. https://doi.org/10.1016/J.CHAOS.2021.111210

Article  Google Scholar 

Wouapi, M. K., Fotsin, B. H., Ngouonkadi, E. B. M., Kemwoue, F. F., & Njitacke, Z. T. (2021). Complex bifurcation analysis and synchronization optimal control for Hindmarsh-Rose neuron model under magnetic flow effect. Cognitive Neurodynamics, 15(2), 315–347. https://doi.org/10.1007/S11571-020-09606-5

Article  Google Scholar 

Wu, F., Ma, J., & Zhang, G. (2019). A new neuron model under electromagnetic field. Applied Mathematics and Computation, 347, 590–599. https://doi.org/10.1016/j.amc.2018.10.087

Article  Google Scholar 

Wu, T., Fan, J., Lee, K. S., & Li, X. (2015). Cortical neuron activation induced by electromagnetic stimulation: a quantitative analysis via modelling and simulation. Journal of Computational Neuroscience 2015 40:1, 40(1), 51–64. https://doi.org/10.1007/S10827-015-0585-1

Wu, Y., Ding, Q., Li, T., Yu, D., & Jia, Y. (2022). Effect of temperature on synchronization of scale-free neuronal network. Nonlinear Dynamics, 2022, 1–18. https://doi.org/10.1007/S11071-022-07967-6

Article  Google Scholar 

Yang, H., Wang, H., Guo, L., & Xu, G. (2021a). Dynamic responses of neurons in different states under magnetic field stimulation. Journal of Computational Neuroscience 2021a 50:1, 50(1), 109–120. https://doi.org/10.1007/S10827-021-00796-3

Yang, Y., Ma, J., Xu, Y., & Jia, Y. (2021b). Energy dependence on discharge mode of Izhikevich neuron driven by external stimulus under electromagnetic induction. Cognitive Neurodynamics, 15(2), 265–277. https://doi.org/10.1007/s11571-020-09596-4

留言 (0)

沒有登入
gif