Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Access via DeepDyve Unlimited fulltext viewing Of this article Organize, annotate And mark up articles Printing And downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication Details AbstractIn the stationary epithelium, the Golgi apparatus assumes an apical position, above the cell nucleus. However, during wound healing and morphogenesis, as the epithelial cells starts migrating, it relocalizes closer to the basal plane. On this plane, the position of Golgi with respect to the cell nucleus defines the organizational polarity of a migrating epithelial cell, which is crucial for an efficient collective migration. Yet, factors influencing the Golgi polarity remain elusive. Here we constructed a graph neural network-based deep learning model to systematically analyze the dependency of Golgi polarity on multiple geometric and physical factors. In spite of the complexity of a migrating epithelial monolayer, our simple model was able to predict the Golgi polarity with 75% accuracy. Moreover, the model predicted that Golgi polarity predominantly correlates with the orientation of maximum principal stress. Finally, we found that this correlation operates locally since progressive coarsening of the stress field over multiple cell-lengths reduced the stress polarity-Golgi polarity correlation as well as the predictive accuracy of the neural network model. Taken together, our results demonstrated that graph neural networks could be a powerful tool towards understanding how different physical factors influence collective cell migration. They also highlighted a previously unknown role of physical cues in defining the intracellular organization.
S. Karger AG, Basel
Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
留言 (0)