Evolving roles of CD38 metabolism in solid tumour microenvironment

Malavasi F, Deaglio S, Funaro A, Ferrero E, Horenstein AL, Ortolan E, et al. Evolution and function of the ADP ribosyl cyclase/CD38 gene family in physiology and pathology. Physiological Rev. 2008;88:841–86.

Article  CAS  Google Scholar 

Dwivedi S, Rendón-Huerta EP, Ortiz-Navarrete V, Montaño LF. CD38 and regulation of the immune response cells in cancer. J Oncol. 2021;2021:6630295.

Article  PubMed  PubMed Central  Google Scholar 

van de Donk N, Richardson PG, Malavasi F. CD38 antibodies in multiple myeloma: back to the future. Blood. 2018;131:13–29.

Article  PubMed  Google Scholar 

van de Donk N, Pawlyn C, Yong KL. Multiple myeloma. Lancet. 2021;397:410–27.

Article  PubMed  Google Scholar 

Matas-Céspedes A, Vidal-Crespo A, Rodriguez V, Villamor N, Delgado J, Giné E, et al. The human CD38 monoclonal antibody daratumumab shows antitumor activity and hampers leukemia-microenvironment interactions in chronic lymphocytic leukemia. Clin Cancer Res. 2017;23:1493–505.

Article  PubMed  Google Scholar 

Salles G, Gopal AK, Minnema MC, Wakamiya K, Feng H, Schecter JM, et al. Phase 2 study of daratumumab in relapsed/refractory mantle-cell lymphoma, diffuse large b-cell lymphoma, and follicular lymphoma. Clin Lymphoma Myeloma Leuk. 2019;19:275–84.

Article  PubMed  Google Scholar 

Yang CL, Jiang NG, Zhang L, Shen K, Wu Y. Relapsed/refractory multiple myeloma-transformed plasma-cell leukemia successfully treated with daratumumab followed by autologous stem cell transplantation. Therapeutic Adv Hematol. 2021;12:2040620721989578.

Article  CAS  Google Scholar 

Yamada T, Hara T, Goto N, Iwata H, Tsurumi H. Follicular lymphoma suggested to transform into EBV-negative plasmablastic lymphoma. Int J Hematol. 2019;109:723–30.

Article  CAS  PubMed  Google Scholar 

Holthof LC, van der Schans JJ, Katsarou A, Poels R, Gelderloos AT, Drent E, et al. Bone marrow mesenchymal stromal cells can render multiple myeloma cells resistant to cytotoxic machinery of CAR T cells through inhibition of apoptosis. Clin Cancer Res. 2021;27:3793–803.

Article  CAS  PubMed  Google Scholar 

de Weers M, Tai YT, van der Veer MS, Bakker JM, Vink T, Jacobs DC, et al. Daratumumab, a novel therapeutic human CD38 monoclonal antibody, induces killing of multiple myeloma and other hematological tumors. J Immunol. 2011;186:1840–8.

Article  PubMed  Google Scholar 

Maples KT, Johnson C, Lonial S. Antibody treatment in multiple myeloma. Clin Adv Hematol Oncol. 2021;19:166–74.

PubMed  Google Scholar 

Chini C, Zeidler JD, Kashyap S, Warner G, Chini EN. Evolving concepts in NAD+ metabolism. Cell Metab. 2021;33:1076–87.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, et al. Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. 2020;585:288–92.

Article  PubMed  PubMed Central  Google Scholar 

Lee HC, Deng QW, Zhao YJ. The calcium signaling enzyme CD38-a paradigm for membrane topology defining distinct protein functions. Cell Calcium. 2022;101:102514.

Article  CAS  PubMed  Google Scholar 

Angeletti C, Amici A, Gilley J, Loreto A, Trapanotto AG, Antoniou C, et al. SARM1 is a multi-functional NAD(P)ase with prominent base exchange activity, all regulated bymultiple physiologically relevant NAD metabolites. iScience. 2022;25:103812.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Xie L, Wen K, Li Q, Huang CC, Zhao JL, Zhao QH, et al. CD38 deficiency protects mice from high fat diet-induced nonalcoholic fatty liver disease through activating NAD+/Sirtuins signaling pathways-mediated inhibition of lipid accumulation and oxidative stress in hepatocytes. Int J Biol Sci. 2021;17:4305–15.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Zuo W, Liu N, Zeng Y, Liu Y, Li B, Wu K, et al. CD38: a potential therapeutic target in cardiovascular disease. Cardiovascular Drugs Ther. 2021;35:815–28.

Article  CAS  Google Scholar 

Reinherz EL, Kung PC, Goldstein G, Levey RH, Schlossman SF. Discrete stages of human intrathymic differentiation: analysis of normal thymocytes and leukemic lymphoblasts of T-cell lineage. Proc Natl Acad Sci USA. 1980;77:1588–92.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Ferrero E, Faini AC, Malavasi F. A phylogenetic view of the leukocyte ectonucleotidases. Immunol Lett. 2019;205:51–8.

Article  CAS  PubMed  Google Scholar 

Hogan KA, Chini C, Chini EN. The multi-faceted ecto-enzyme CD38: roles in immunomodulation, cancer, aging, and metabolic diseases. Front Immunol. 2019;10:1187.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Glaría E, Valledor AF. Roles of CD38 in the immune response to infection. Cells. 2020;9:228.

Article  PubMed Central  Google Scholar 

Roccatello D, Fenoglio R, Sciascia S, Naretto C, Rossi D, Ferro M, et al. CD38 and anti-CD38 monoclonal antibodies in AL amyloidosis: targeting plasma cells and beyond. Int J Mol Sci. 2020;21:4129.

Article  CAS  PubMed Central  Google Scholar 

Lund FE, Solvason NW, Cooke MP, Health AW, Grimaldi JC, Parkhouse RM, et al. Signaling through murine CD38 is impaired in antigen receptor-unresponsive B cells. Eur J Immunol. 1995;25:1338–45.

Article  CAS  PubMed  Google Scholar 

Grimaldi JC, Balasubramanian S, Kabra NH, Shanafelt A, Bazan JF, Zurawski G, et al. CD38-mediated ribosylation of proteins. J Immunol. 1995;155:811–7.

CAS  PubMed  Google Scholar 

Ferrero E, Saccucci F, Malavasi F. The human CD38 gene: polymorphism, CpG island, and linkage to the CD157 (BST-1) gene. Immunogenetics. 1999;49:597–604.

Article  CAS  PubMed  Google Scholar 

Dong C, Willerford D, Alt FW, Cooper MD. Genomic organization and chromosomal localization of the mouse Bp3 gene, a member of the CD38/ADP-ribosyl cyclase family. Immunogenetics. 1996;45:35–43.

Article  CAS  PubMed  Google Scholar 

Ogiya D, Liu J, Ohguchi H, Kurata K, Samur MK, Tai YT, et al. The JAK-STAT pathway regulates CD38 on myeloma cells in the bone marrow microenvironment: therapeutic implications. Blood. 2020;136:2334–45.

Article  PubMed  PubMed Central  Google Scholar 

Wu Y, Zou F, Lu Y, Li X, Li F, Feng X, et al. SETD7 promotes TNF-α-induced proliferation and migration of airway smooth muscle cells in vitro through enhancing NF-κB/CD38 signaling. Int Immunopharmacol. 2019;72:459–66.

Article  CAS  PubMed  Google Scholar 

Wu Y, Lu Y, Zou F, Fan X, Li X, Zhang H, et al. PTEN participates in airway remodeling of asthma by regulating CD38/Ca2+/CREB signaling. Aging. 2020;12:16326–40.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Angelicola S, Ruzzi F, Landuzzi L, Scalambra L, Gelsomino F, Ardizzoni A, et al. IFN-γ and CD38 in hyperprogressive cancer development. Cancers. 2021;13:309.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Wang LF, Miao LJ, Wang XN, Huang CC, Qian YS, Huang X, et al. CD38 deficiency suppresses adipogenesis and lipogenesis in adipose tissues through activating Sirt1/PPARγ signaling pathway. J Cell Mol Med. 2018;22:101–10.

Article  CAS  PubMed  Google Scholar 

Chen Q, Ross AC. All-trans-retinoic acid and CD38 ligation differentially regulate CD1d expression and α-galactosylceramide-induced immune responses. Immunobiology. 2015;220:32–41.

Article  CAS  PubMed  Google Scholar 

MacDonald RJ, Shrimp JH, Jiang H, Zhang L, Lin H, Yen A. Probing the requirement for CD38 in retinoic acid-induced HL-60 cell differentiation with a small molecule dimerizer and genetic knockout. Sci Rep. 2017;7:17406.

Article  PubMed  PubMed Central  Google Scholar 

Saborit-Villarroya I, Vaisitti T, Rossi D, D’Arena G, Gaidano G, Malavasi F, et al. E2A is a transcriptional regulator of CD38 expression in chronic lymphocytic leukemia. Leukemia. 2011;25:479–88.

Article  CAS  PubMed  Google Scholar 

Zaunders JJ, Dyer WB, Munier ML, Ip S, Liu J, Amyes E, et al. CD127+CCR5+CD38+++CD4+ Th1 effector cells are an early component of the primary immune response to vaccinia virus and precede development of interleukin-2+ memory CD4+ T cells. J Virol. 2006;80:10151–61.

Article  CAS  PubMed  PubMed Central  Google Scholar 

Schwenk R, Banania G, Epstein J, Kim Y, Peters B, Belmonte M, et al. Ex vivo tetramer staining and cell surface phenotyping for early activation markers CD38 and HLA-DR to enumerate and characterize malaria antigen-specific CD8+ T-cells induced in human volunteers immunized with a Plasmodium falciparum adenovirus-vectored malaria vaccine expressing AMA1. Malar J. 2013;12:376.

Article  PubMed  PubMed Central  Google Scholar 

Mallone R, Ferrua S, Morra M, Zocchi E, Mehta K, Notarangelo LD, et al. Characterization of a CD38-like

留言 (0)

沒有登入
gif