European Surgical Research
Qin Z. · Zhu G. · Luo H. · Deng Y.Log in to MyKarger to check if you already have access to this content.
Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use read more
CHF 38.00 *
EUR 35.00 *
USD 39.00 *
Buy a Karger Article Bundle (KAB) and profit from a discount!
If you would like to redeem your KAB credit, please log in.
Save over 20% compared to the individual article price. Access via DeepDyve Unlimited fulltext viewing Of this article Organize, annotate And mark up articles Printing And downloading restrictions apply Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more Select* The final prices may differ from the prices shown due to specifics of VAT rules.
Article / Publication Details AbstractIntroduction: Intracerebral hemorrhage (ICH) is known to trigger neuronal ferroptosis while forkhead box O3 (FOXO3) is implicated in ICH. This study aimed to determine the specific effect of FOXO3 on neuronal ferroptosis after ICH. Methods: The ICH mouse model was established through the injection of bacterial collagenase type IV and the cell model was established in Hemin-induced HT-22 cells. Subsequently, neurological functions, brain water content, and histopathological changes in mice were assessed. HT-22 cell activity was examined via cell counting kit-8 (CCK-8) method, and the levels of FOXO3, NADPH oxidase 4 (NOX4), and glutathione peroxidase 4 (GPX4) in brain tissues and HT-22 cells were measured. Fe2+ concentration and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) in the tissues and cells were examined. The binding relationship between FOXO3 and the NOX4 promoter region was determined via chromatin-immunoprecipitation (Ch-IP). Rescue experiments were designed to probe the role of NOX4 in the regulation of FOXO3 on neuronal ferroptosis. Results: FOXO3 was highly-expressed in ICH models while silencing FOXO3 alleviated brain damage, edema, and inflammatory infiltration in ICH mice. Meanwhile, silencing FOXO3 enhanced cell activity, diminished ROS and MDA activities and Fe2+ concentration, and elevated GSH and GPX4 levels in the tissues or cells. FOXO3 could bind to the NOX4 promoter and upregulate NOX4 transcription. NOX4 overexpression partially neutralized the repressive role of silencing FOXO3 in neuronal ferroptosis. Conclusion: Silencing FOXO3 attenuated ICH-induced neuronal ferroptosis via down-regulating NOX4 transcription levels, thus ameliorating post-ICH brain damage.
S. Karger AG, Basel
Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
留言 (0)