Regulation of FOXO3 on neuronal ferroptosis after intracerebral hemorrhage via modulating NOX4 transcription

European Surgical Research

Qin Z. · Zhu G. · Luo H. · Deng Y.

Log in to MyKarger to check if you already have access to this content.

Buy FullText & PDF Unlimited re-access via MyKarger Unrestricted printing, no saving restrictions for personal use
read more

CHF 38.00 *
EUR 35.00 *
USD 39.00 *

Select

KAB

Buy a Karger Article Bundle (KAB) and profit from a discount!

If you would like to redeem your KAB credit, please log in.

Save over 20% compared to the individual article price.

Learn more

Access via DeepDyve Unlimited fulltext viewing Of this article Organize, annotate And mark up articles Printing And downloading restrictions apply

Select

Subscribe Access to all articles of the subscribed year(s) guaranteed for 5 years Unlimited re-access via Subscriber Login or MyKarger Unrestricted printing, no saving restrictions for personal use read more

Subcription rates

Select

* The final prices may differ from the prices shown due to specifics of VAT rules.

Article / Publication Details Abstract

Introduction: Intracerebral hemorrhage (ICH) is known to trigger neuronal ferroptosis while forkhead box O3 (FOXO3) is implicated in ICH. This study aimed to determine the specific effect of FOXO3 on neuronal ferroptosis after ICH. Methods: The ICH mouse model was established through the injection of bacterial collagenase type IV and the cell model was established in Hemin-induced HT-22 cells. Subsequently, neurological functions, brain water content, and histopathological changes in mice were assessed. HT-22 cell activity was examined via cell counting kit-8 (CCK-8) method, and the levels of FOXO3, NADPH oxidase 4 (NOX4), and glutathione peroxidase 4 (GPX4) in brain tissues and HT-22 cells were measured. Fe2+ concentration and the levels of reactive oxygen species (ROS), malondialdehyde (MDA), and glutathione (GSH) in the tissues and cells were examined. The binding relationship between FOXO3 and the NOX4 promoter region was determined via chromatin-immunoprecipitation (Ch-IP). Rescue experiments were designed to probe the role of NOX4 in the regulation of FOXO3 on neuronal ferroptosis. Results: FOXO3 was highly-expressed in ICH models while silencing FOXO3 alleviated brain damage, edema, and inflammatory infiltration in ICH mice. Meanwhile, silencing FOXO3 enhanced cell activity, diminished ROS and MDA activities and Fe2+ concentration, and elevated GSH and GPX4 levels in the tissues or cells. FOXO3 could bind to the NOX4 promoter and upregulate NOX4 transcription. NOX4 overexpression partially neutralized the repressive role of silencing FOXO3 in neuronal ferroptosis. Conclusion: Silencing FOXO3 attenuated ICH-induced neuronal ferroptosis via down-regulating NOX4 transcription levels, thus ameliorating post-ICH brain damage.

S. Karger AG, Basel

Article / Publication Details Copyright / Drug Dosage / Disclaimer Copyright: All rights reserved. No part of this publication may be translated into other languages, reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, microcopying, or by any information storage and retrieval system, without permission in writing from the publisher.
Drug Dosage: The authors and the publisher have exerted every effort to ensure that drug selection and dosage set forth in this text are in accord with current recommendations and practice at the time of publication. However, in view of ongoing research, changes in government regulations, and the constant flow of information relating to drug therapy and drug reactions, the reader is urged to check the package insert for each drug for any changes in indications and dosage and for added warnings and precautions. This is particularly important when the recommended agent is a new and/or infrequently employed drug.
Disclaimer: The statements, opinions and data contained in this publication are solely those of the individual authors and contributors and not of the publishers and the editor(s). The appearance of advertisements or/and product references in the publication is not a warranty, endorsement, or approval of the products or services advertised or of their effectiveness, quality or safety. The publisher and the editor(s) disclaim responsibility for any injury to persons or property resulting from any ideas, methods, instructions or products referred to in the content or advertisements.

留言 (0)

沒有登入
gif