Cage-modified hypocrellin against multidrug-resistant Candida spp. with unprecedented activity in light-triggered combinational photodynamic therapy

Infections caused by multidrug-resistant fungi pose a devastating threat to human health worldwide, making new antifungal strategies urgently desired. Antimicrobial photodynamic therapy (aPDT) has gained increasing attention due to its potential in fighting against fungal infection. However, the preparation of highly efficient and water-soluble photosensitizers (PSs) for this purpose remains a challenge. Herein, we present a new strategy to prepare powerful PSs for efficient aPDT by introducing a porous cage compound, which could facilitate the transportation of O2 and reactive oxygen species (ROS). Specifically, the natural PS hypocrellin A (HA) was attached to a novel organic cage compound (covalent organic polyhedra 1 tied, COP1T) with polyethylene glycol (PEG) chains to improve its water solubility. It was found that the resulting COP1T-HA exhibited in vitro antifungal efficiency several folds higher compared to the free HA in fighting against four types of multidrug-resistant fungal planktonic cells and biofilms, including the “super fungus” Candida auris. Interestingly, the red-shift of COP1T-HA adsorption led to the realization of phototheranostic aPDT for cage-modified HA or derivatives. Additionally, COP1T-HA exhibited good biocompatibility, excellent disinfection capacity and wound healing efficiency without obvious toxic effects in vivo of rat model. With further development and optimization, COP1T-HA has great potential to become a new class of antifungal agent to fight against drug-resistant pathogens.

留言 (0)

沒有登入
gif