Integrated metabolite profiling and transcriptome analysis reveal candidate genes involved in the formation of yellow Nelumbo nucifera

As a worldwide major ornamental flower and a edible plant, lotus (Nelumbo nucifera) is also used as medicine and tea beverage. Here, transcriptome and metabolites of yellow (MLQS) and white (YGB) lotus cultivars during five key flower coloration stages were profiled. 2014 differentially expressed genes were detected with 11 carotenoids in lotus were identified for the first time. Then, regulatory networks between and within functional modules was reconstructed, and the correlation between module-metabolites and gene-metabolites was conducted within 3 core modules. 18 candidate genes related to the formation of yellow flower were screened out and a gene regulatory model for the flower color difference between MLQS and YGB were speculated as follows: The substrate competition between F3′H and F3′5′H and substrate specificity of FLS, together with differential expression of CCD4a and CCD4b were contribute to the differences in flavonoids and carotenoids. Besides, UGT73C2, UGT91C1–2 and SGTase, and regulation of UGTs by transcription factors PLATZ, MADS, NAC031, and MYB308 may also play a role in the upstream regulation. The following verification results indicated that functional differences existed in the coding sequences of NnCCD4b and promoters of NnCCD4a of MLQS and YGB. In all, this study preliminarily reveals the mechanism of yellow flower coloration in lotus and provides new ideas for the study of complex ornamental characters of other plants.

留言 (0)

沒有登入
gif