Postoperative Magnetic Resonance Imaging of the Knee Ligaments

Mall N.A. Chalmers P.N. Moric M. et al.

Incidence and trends of anterior cruciate ligament reconstruction in the United States.

Am J Sports Med. 42: 2363-2370Giaconi J.C. Allen C.R. Steinbach L.S.

Anterior cruciate ligament graft reconstruction: clinical, technical, and imaging overview.

Top Magn Reson Imaging. 20: 129-150Lohmander L.S. Ostenberg A. Englund M. et al.

High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury.

Arthritis Rheum. 50: 3145-3152Barenius B. Ponzer S. Shalabi A. et al.

Increased risk of osteoarthritis after anterior cruciate ligament reconstruction: a 14-year follow-up study of a randomized controlled trial.

Am J Sports Med. 42: 1049-1057Cheung E.C. DiLallo M. Feeley B.T. et al.

Osteoarthritis and ACL reconstruction-myths and risks.

Curr Rev Musculoskelet Med. 13: 115-122Crawford S.N. Waterman B.R. Lubowitz J.H.

Long-term failure of anterior cruciate ligament reconstruction.

Arthroscopy. 29: 1566-1571Lind M. Menhert F. Pedersen A.B.

The first results from the Danish ACL reconstruction registry: epidemiologic and 2 year follow-up results from 5,818 knee ligament reconstructions.

Knee Surg Sports Traumatol Arthrosc. 17: 117-124Bencardino J.T. Beltran J. Feldman M.I. et al.

MR imaging of complications of anterior cruciate ligament graft reconstruction.

Radiographics. 29: 2115-2126Papakonstantinou O. Chung C.B. Chanchairujira K. et al.

Complications of anterior cruciate ligament reconstruction: MR imaging.

Eur Radiol. 13: 1106-1117Svantesson E. Hamrin Senorski E. Kristiansson F. et al.

Comparison of concomitant injuries and patient-reported outcome in patients that have undergone both primary and revision ACL reconstruction-a national registry study.

J Orthop Surg Res. 15: 9Grassi A. Kim C. Marcheggiani Muccioli G.M. et al.

What is the mid-term failure rate of revision acl reconstruction? A systematic review.

Clin Orthop Relat Res. 475: 2484-2499Skendzel J.G. Sekiya J.K. Wojtys E.M.

Diagnosis and management of the multiligament-injured knee.

J Orthop Sports Phys Ther. 42: 234-242Rispoli D.M. Sanders T.G. Miller M.D. et al.

Magnetic resonance imaging at different time periods following hamstring harvest for anterior cruciate ligament reconstruction.

Arthroscopy. 17: 2-8Aglietti P. Buzzi R. Zaccherotti G. et al.

Patellar tendon versus doubled semitendinosus and gracilis tendons for anterior cruciate ligament reconstruction.

Am J Sports Med. 22 (): 211-217Samuelsen B.T. Webster K.E. Johnson N.R. et al.

Hamstring Autograft versus Patellar Tendon Autograft for ACL Reconstruction: Is There a Difference in Graft Failure Rate? A Meta-analysis of 47,613 Patients.

Clin Orthop Relat Res. 475: 2459-2468Xie X. Liu X. Chen Z. et al.

A meta-analysis of bone-patellar tendon-bone autograft versus four-strand hamstring tendon autograft for anterior cruciate ligament reconstruction.

Knee. 22: 100-110Goetz G. de Villiers C. Sadoghi P. et al.

Allograft for anterior cruciate ligament reconstruction (ACLR): a systematic review and meta-analysis of long-term comparative effectiveness and safety. results of a health technology assessment.

Arthrosc Sports Med Rehabil. 2: e873-e891Dhammi I.K. Rehan Ul H. Kumar S.

Graft choices for anterior cruciate ligament reconstruction.

Indian J Orthop. 49: 127-128Oh J.Y. Kim K.T. Park Y.J. et al.

Biomechanical comparison of single-bundle versus double-bundle anterior cruciate ligament reconstruction: a meta-analysis.

Knee Surg Relat Res. 32: 14Chouliaras V. Ristanis S. Moraiti C. et al.

Effectiveness of reconstruction of the anterior cruciate ligament with quadrupled hamstrings and bone-patellar tendon-bone autografts: an in vivo study comparing tibial internal-external rotation.

Am J Sports Med. 35: 189-196Casagranda B.U. Maxwell N.J. Kavanagh E.C. et al.

Normal appearance and complications of double-bundle and selective-bundle anterior cruciate ligament reconstructions using optimal MRI techniques.

AJR Am J Roentgenol. 192: 1407-1415Poellinger A. Scheffler S. Hamm B. et al.

Magnetic resonance imaging of double-bundle anterior cruciate ligament reconstruction.

Skeletal Radiol. 38: 309-315Kiekara T. Järvelä T. Huhtala H. et al.

MRI of double-bundle ACL reconstruction: evaluation of graft findings.

Skeletal Radiol. 41: 835-842Sonoda M. Morikawa T. Tsuchiya K. et al.

Correlation between knee laxity and graft appearance on magnetic resonance imaging after double-bundle hamstring graft anterior cruciate ligament reconstruction.

Am J Sports Med. 35: 936-942Vogl T.J. Schmitt J. Lubrich J. et al.

Reconstructed anterior cruciate ligaments using patellar tendon ligament grafts: diagnostic value of contrast-enhanced MRI in a 2-year follow-up regimen.

Eur Radiol. 11: 1450-1456Howell S.M. Clark J.A. Blasier R.D.

Serial magnetic resonance imaging of hamstring anterior cruciate ligament autografts during the first year of implantation. A preliminary study.

Am J Sports Med. 19: 42-47Ramos D.M. Dhandapani R. Subramanian A. et al.

Clinical complications of biodegradable screws for ligament injuries.

Mater Sci Eng C Mater Biol Appl. 109: 110423Wan F. Chen T. Ge Y. et al.

Effect of nearly isometric ACL reconstruction on graft-tunnel motion: a quantitative clinical study.

Orthop J Sports Med. 7https://doi.org/10.1177/2325967119890382Duc S.R. Zanetti M. Kramer J. et al.

Magnetic resonance imaging of anterior cruciate ligament tears: evaluation of standard orthogonal and tailored paracoronal images.

Acta Radiol. 46: 729-733Katahira K. Yamashita Y. Takahashi M. et al.

MR imaging of the anterior cruciate ligament: value of thin slice direct oblique coronal technique.

Radiat Med. 19: 1-7Ahn J.H. Lee S.H. Yoo J.C. et al.

Measurement of the graft angles for the anterior cruciate ligament reconstruction with transtibial technique using postoperative magnetic resonance imaging in comparative study.

Knee Surg Sports Traumatol Arthrosc. 15: 1293-1300Fujimoto E. Sumen Y. Deie M. et al.

Anterior cruciate ligament graft impingement against the posterior cruciate ligament: diagnosis using MRI plus three-dimensional reconstruction software.

Magn Reson Imaging. 22: 1125-1129Pearle A.D. Shannon F.J. Granchi C. et al.

Comparison of 3-dimensional obliquity and anisometric characteristics of anterior cruciate ligament graft positions using surgical navigation.

Am J Sports Med. 36: 1534-1541Steckel H. Vadala G. Davis D. et al.

2D and 3D 3-tesla magnetic resonance imaging of the double bundle structure in anterior cruciate ligament anatomy.

Knee Surg Sports Traumatol Arthrosc. 14: 1151-1158Ayerza M.A. Muscolo D.L. Costa-Paz M. et al.

Comparison of sagittal obliquity of the reconstructed anterior cruciate ligament with native anterior cruciate ligament using magnetic resonance imaging.

Arthroscopy. 19: 257-261Hosseini A. Lodhia P. Van de Velde S.K. et al.

Tunnel position and graft orientation in failed anterior cruciate ligament reconstruction: a clinical and imaging analysis.

Int Orthop. 36: 845-852Forsythe B. Kopf S. Wong A.K. et al.

The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models.

J Bone Joint Surg Am. 92: 1418-1426Marchant B.G. Noyes F.R. Barber-Westin S.D. et al.

Prevalence of nonanatomical graft placement in a series of failed anterior cruciate ligament reconstructions.

Am J Sports Med. 38: 1987-1996

Principles for placing the tibial tunnel and avoiding roof impingement during reconstruction of a torn anterior cruciate ligament.

Knee Surg Sports Traumatol Arthrosc. 6: S49-S55Morgan C.D. Kalman V.R. Grawl D.M.

Definitive landmarks for reproducible tibial tunnel placement in anterior cruciate ligament reconstruction.

Arthroscopy. 11: 275-288Steiner M.E. Battaglia T.C. Heming J.F. et al.

Independent drilling outperforms conventional transtibial drilling in anterior cruciate ligament reconstruction.

Am J Sports Med. 37: 1912-1919Arnold M.P. Kooloos J. van Kampen A.

Single-incision technique misses the anatomical femoral anterior cruciate ligament insertion: a cadaver study.

Knee Surg Sports Traumatol Arthrosc. 9: 194-199Andriacchi T.P. Briant P.L. Bevill S.L. et al.

Rotational changes at the knee after ACL injury cause cartilage thinning.

Clin Orthop Relat Res. 442: 39-44Busam M.L. Provencher M.T. Bach Jr., B.R.

Complications of anterior cruciate ligament reconstruction with bone-patellar tendon-bone constructs: care and prevention.

Am J Sports Med. 36: 379-394George M.S. Dunn W.R. Spindler K.P.

Current concepts review: revision anterior cruciate ligament reconstruction.

Am J Sports Med. 34: 2026-2037

Anteromedial portal technique for the anterior cruciate ligament femoral socket: pitfalls and solutions.

Arthroscopy. 25: 95-101Marwan Y. Böttcher J. Laverdière C. et al.

Three-dimensional magnetic resonance imaging for guiding tibial and femoral tunnel position in anterior cruciate ligament reconstruction: a cadaveric study.

Orthop J Sports Med. 8https://doi.org/10.1177/2325967120909913Claes S. Verdonk P. Forsyth R. et al.

The "ligamentization" process in anterior cruciate ligament reconstruction: what happens to the human graft? A systematic review of the literature.

Am J Sports Med. 39: 2476-2483Rougraff B. Shelbourne K.D. Gerth P.K. et al.

Arthroscopic and histologic analysis of human patellar tendon autografts used for anterior cruciate ligament reconstruction.

Am J Sports Med. 21: 277-284Rougraff B.T. Shelbourne K.D.

Early histologic appearance of human patellar tendon autografts used for anterior cruciate ligament reconstruction.

Knee Surg Sports Traumatol Arthrosc. 7: 9-14Sanchez M. Anitua E. Azofra J. et al.

Ligamentization of tendon grafts treated with an endogenous preparation rich in growth factors: gross morphology and histology.

Arthroscopy. 26: 470-480Jansson K.A. Harilainen A. Sandelin J. et al.

Bone tunnel enlargement after anterior cruciate ligament reconstruction with the hamstring autograft and endobutton fixation technique. A clinical, radiographic and magnetic resonance imaging study with 2 years follow-up.

Knee Surg Sports Traumatol Arthrosc. 7: 290-295Zhang S. Liu S. Yang L. et al.

Morphological Changes of the Femoral Tunnel and Their Correlation With Hamstring Tendon Autograft Maturation up to 2 Years After Anterior Cruciate Ligament Reconstruction Using Femoral Cortical Suspension.

Am J Sports Med. 48: 554-564Panos J.A. Webster K.E. Hewett T.E.

Anterior cruciate ligament grafts display differential maturation patterns on magnetic resonance imaging following reconstruction: a systematic review.

Knee Surg Sports Traumatol Arthrosc. 28: 2124-2138Wright R.W. Gill C.S. Chen L. et al.

Outcome of revision anterior cruciate ligament reconstruction: a systematic review.

J Bone Joint Surg Am. 94: 531-536Janarv P.M. Nystrom A. Werner S. et al.

Anterior cruciate ligament injuries in skeletally immature patients.

J Pediatr Orthop. 16: 673-677Souryal T.O. Freeman T.R.

Intercondylar notch size and anterior cruciate ligament injuries in athletes. A prospective study.

Am J Sports Med. 21: 535-539

Follow-up study on transphyseal ACL reconstruction in Irish adolescents with no cases of leg length discrepancy or angular deformity.

Ir J Med Sci. 189: 1323-1329Collins M.S. Unruh K.P. Bond J.R. et al.

Magnetic resonance imaging of surgically confirmed anterior cruciate ligament graft disruption.

Skeletal Radiol. 37: 233-243Saupe N. White L.M. Chiavaras M.M. et al.

Anterior cruciate ligament reconstruction grafts: MR imaging features at long-term follow-up--correlation with functional and clinical evaluation.

Radiology. 249: 581-590van Eck C.F. Kropf E.J. Romanowski J.R. et al.

ACL graft re-rupture after double-bundle reconstruction: factors that influence the intra-articular pattern of injury.

Knee Surg Sports Traumatol Arthrosc. 19: 340-346Teraoka T. Hashimoto Y. Takahashi S. et al.

The relationship between graft intensity on MRI and tibial tunnel placement in anatomical double-bundle ACL reconstruction.

Eur J Orthop Surg Traumatol. 29: 1749-1758Naraghi A.M. Gupta S. Jacks L.M. et al.

Anterior cruciate ligament reconstruction: MR imaging signs of anterior knee laxity in the presence of an intact graft.

Radiology. 263: 802-810Viala P. Marchand P. Lecouvet F. et al.

Imaging of the postoperative knee.

Diagn Interv Imaging. 97: 823-837Van der Bracht H. Bellemans J. Victor J. et al.

Can a tibial tunnel in ACL surgery be placed anatomically without impinging on the femoral notch? A risk factor analysis.

Knee Surg Sports Traumatol Arthrosc. 22: 291-297Facchetti L. Schwaiger B.J. Gersing A.S. et al.

Cyclops lesions detected by MRI are frequent findings after ACL surgical reconstruction but do not impact clinical outcome over 2 years.

Eur Radiol. 27: 3499-3508Simpfendorfer C. Miniaci A. Subhas N. et al.

Pseudocyclops: two cases of ACL graft partial tears mimicking cyclops lesions on MRI.

Skeletal Radiol. 44: 1169-1173Zappia M. Capasso R. Berritto D. et al.

Anterior cruciate ligament reconstruction: MR imaging findings.

Musculoskelet Surg. 101: 23-35Pelfort X. Monllau J.C. Puig L. et al.

Iliotibial band friction syndrome after anterior cruciate ligament reconstruction using the transfix device: report of two cases and review of the literature.

Knee Surg Sports Traumatol Arthrosc. 14: 586-589

Tunnel widening after hamstring anterior cruciate ligament reconstruction is influenced by the type of graft fixation used: a prospective randomized study.

Arthroscopy. 21: 1337-1341Struewer J. Efe T. Frangen T.M. et al.

Prevalence and influence of tibial tunnel widening after isolated anterior cruciate ligament reconstruction using patella-bone-tendon-bone-graft: long-term follow-up.

Orthop Rev (Pavia). 4: e21Peyrache M.D. Djian P. Christel P. et al.

Tibial tunnel enlargement after anterior cruciate ligament reconstruction by autogenous bone-patellar tendon-bone graft.

Knee Surg Sports Traumatol Arthrosc. 4: 2-8Ghazikhanian V. Beltran J. Nikac V. et al.

Tibial tunnel and pretibial cysts following ACL graft reconstruction: MR imaging diagnosis.

Skeletal Radiol. 41: 1375-1379Deie M. Sumen Y. Ochi M. et al.

Pretibial cyst formation after anterior cruciate ligament reconstruction using auto hamstring grafts: two case reports in a prospective study of 89 cases.

Magn Reson Imaging. 18: 973-977

Outcomes of operative and nonoperative treatment of multiligament knee injuries: an evidence-based review.

Sports Med Arthrosc Rev. 19: 167-173Ng J.W.G. Myint Y. Ali F.M.

Management of multiligament knee injuries.

EFORT Open Rev. 5: 145-155Medina O. Arom G.A. Yeranosian M.G. et al.

Vascular and nerve injury after knee dislocation: a systematic review.

Clin Orthop Relat Res. 472: 2621-2629Samson D. Ng C.Y. Power D.

An evidence-based algorithm for the management of common peroneal nerve injury associated with traumatic knee dislocation.

EFORT Open Rev. 1: 362-367Levy B.A. Dajani K.A. Whelan D.B. et al.

Decision making in the multiligament-injured knee: an evidence-based systematic review.

Arthroscopy. 25: 430-438

The posteromedial corner of the knee: medial-sided injury patterns revisited.

Am J Sports Med. 32: 337-345Tibor L.M. Marchant Jr., M.H. Taylor D.C. et al.

Management of medial-sided knee injuries, part 2: posteromedial corner.

Am J Sports Med. 39: 1332-1340Laprade R.F. Griffith C.J. Coobs B.R. et al.

Improving outcomes for posterolateral knee injuries.

J Orthop Res. 32: 485-491Alcalá-Galiano A. Baeva M. Ismael M. et al.

Imaging of posterior cruciate ligament (PCL) reconstruction: normal postsurgical appearance and complications.

Skeletal Radiol. 43: 1659-1668Narvy S.J. Pearl M. Vrla M. et al.

Anatomy of the femoral footprint of the posterior cruciate ligament: a systematic review.

Arthroscopy. 31: 345-354Parkar A.P. Alcala-Galiano A.

Rupture of the posterior cruciate ligament: preoperative and postoperative assessment.

Semin Musculoskelet Radiol. 20: 43-51Lee Y.S. Ra H.J. Ahn J.H. et al.

Posterior cruciate ligament tibial insertion anatomy and implications for tibial tunnel placement.

Arthroscopy. 27: 182-187Park H.J. Lee S.Y. Choi Y.J. et al.

The usefulness of the oblique coronal plane of three-dimensional isotropic T2-weighted fast spin-echo (VISTA) knee MRI in the evaluation of posterior cruciate ligament reconstruction with allograft: comparison with the oblique coronal plane of two-dimensional fast spin-echo T2-weighted sequences.

Eur J Radiol. 114: 105-110Park H.J. Lee S.Y. Chung E.C. et al.

The usefulness of the oblique coronal plane in knee MRI on the evaluation of the posterior cruciate ligament.

Acta Radiol. 55: 961-968Chiang L.Y. Lee C.H. Tong K.M. et al.

Posterior cruciate ligament reconstruction implemented by the Ligament Advanced Reinforcement System over a minimum follow-up of 10 years.

Knee. 27: 165-172Vaquero-Picado A. Rodriguez-Merchan E.C.

Isolated posterior cruciate ligament tears: an update of management.

EFORT Open Rev. 2: 89-96

留言 (0)

沒有登入
gif