Mitigating acute chemotherapy-associated adverse events in patients with cancer

Flowers, C. R. et al. Antimicrobial prophylaxis and outpatient management of fever and neutropenia in adults treated for malignancy: American Society of Clinical Oncology clinical practice guideline. J. Clin. Oncol. 31, 794–810 (2013).

PubMed  Article  Google Scholar 

NCCN. Prevention and Treatment of Cancer-Related Infections https://www.nccn.org/professionals/physician_gls/pdf/growthfactors.pdf (NCCN, 2021).

Klastersky, J. et al. Management of febrile neutropaenia: ESMO Clinical Practice Guidelines. Ann. Oncol. 27, v111–v118 (2016).

CAS  PubMed  Article  Google Scholar 

Taplitz, R. A. et al. Outpatient management of fever and neutropenia in adults treated for malignancy: American society of clinical oncology and infectious diseases society of America clinical practice guideline update. J. Clin. Oncol. 36, 1443–1453 (2018).

PubMed  Article  Google Scholar 

Lyman, G. H. & Sparreboom, A. Chemotherapy dosing in overweight and obese patients with cancer. Nat. Rev. Clin. Oncol. 10, 451–459 (2013).

CAS  PubMed  Article  Google Scholar 

Denduluri, N. et al. Dose delays, dose reductions, and relative dose intensity in patients with cancer who received adjuvant or neoadjuvant chemotherapy in community oncology practices. J. Natl Compr. Cancer Netw. 13, 1383–1393 (2015).

CAS  Article  Google Scholar 

Kuderer, N. M. et al. Mortality, morbidity, and cost associated with febrile neutropenia in adult cancer patients. Cancer 106, 2258–2266 (2006).

PubMed  Article  Google Scholar 

Pfreundschuh, M. et al. Two-weekly or 3-weekly CHOP chemotherapy with or without etoposide for the treatment of elderly patients with aggressive lymphomas: results of the NHL-B2 trial of the DSHNHL. Blood 104, 634–641 (2004).

CAS  PubMed  Article  Google Scholar 

Pettengell, R., Schwenkglenks, M. & Bosly, A. Association of reduced relative dose intensity and survival in lymphoma patients receiving CHOP-21 chemotherapy. Ann. Hematol. 87, 429–430 (2008).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Kwak, L. W. et al. Prognostic significance of actual dose intensity in diffuse large-cell lymphoma: results of a tree-structured survival analysis. J. Clin. Oncol. 8, 963–977 (1990).

CAS  PubMed  Article  Google Scholar 

Hanna, R. K. et al. Predictors of reduced relative dose intensity and its relationship to mortality in women receiving multi-agent chemotherapy for epithelial ovarian cancer. Gynecol. Oncol. 129, 74–80 (2013).

CAS  PubMed  Article  Google Scholar 

Citron, M. L. et al. Randomized trial of dose-dense versus conventionally scheduled and sequential versus concurrent combination chemotherapy as postoperative adjuvant treatment of node-positive primary breast cancer: first report of Intergroup Trial C9741/Cancer and Leukemia Group B Trial 9741. J. Clin. Oncol. 21, 1431–1439 (2003).

CAS  PubMed  Article  Google Scholar 

Budman, D. R. et al. Dose and dose intensity as determinants of outcome in the adjuvant treatment of breast cancer. The Cancer and Leukemia Group B. J. Natl Cancer Inst. 90, 1205–1211 (1998).

CAS  PubMed  Article  Google Scholar 

Bosly, A. et al. Achievement of optimal average relative dose intensity and correlation with survival in diffuse large B-cell lymphoma patients treated with CHOP. Ann. Hematol. 87, 277–283 (2008).

CAS  PubMed  Article  Google Scholar 

Bonneterre, J. et al. Epirubicin increases long-term survival in adjuvant chemotherapy of patients with poor-prognosis, node-positive, early breast cancer: 10-year follow-up results of the French Adjuvant Study Group 05 randomized trial. J. Clin. Oncol. 23, 2686–2693 (2005).

CAS  PubMed  Article  Google Scholar 

Bonadonna, G. et al. Adjuvant cyclophosphamide, methotrexate, and fluorouracil in node-positive breast cancer: the results of 20 years of follow-up. N. Engl. J. Med. 332, 901–906 (1995).

CAS  PubMed  Article  Google Scholar 

Hryniuk, W. & Levine, M. N. Analysis of dose intensity for adjuvant chemotherapy trials in stage II breast cancer. J. Clin. Oncol. 4, 1162–1170 (1986).

CAS  PubMed  Article  Google Scholar 

Hryniuk, W., Frei, E. III & Wright, F. A. A single scale for comparing dose-intensity of all chemotherapy regimens in breast cancer: summation dose-intensity. J. Clin. Oncol. 16, 3137–3147 (1998).

CAS  PubMed  Article  Google Scholar 

Hryniuk, W. & Bush, H. The importance of dose intensity in chemotherapy of metastatic breast cancer. J. Clin. Oncol. 2, 1281–1288 (1984).

CAS  PubMed  Article  Google Scholar 

Frei, E. III et al. The relationship between high-dose treatment and combination chemotherapy: the concept of summation dose intensity. Clin. Cancer Res. 4, 2027–2037 (1998).

CAS  PubMed  Google Scholar 

Lyman, G. H., Dale, D. C. & Crawford, J. Incidence and predictors of low dose-intensity in adjuvant breast cancer chemotherapy: a nationwide study of community practices. J. Clin. Oncol. 21, 4524–4531 (2003).

PubMed  Article  Google Scholar 

Lyman, G. H. et al. Incidence and predictors of low chemotherapy dose-intensity in aggressive non-Hodgkin’s lymphoma: a nationwide study. J. Clin. Oncol. 22, 4302–4311 (2004).

CAS  PubMed  Article  Google Scholar 

Lyman, G. H. Impact of chemotherapy dose intensity on cancer patient outcomes. J. Natl Compr. Cancer Netw. 7, 99–108 (2009).

Article  Google Scholar 

Shayne, M. et al. Dose intensity and hematologic toxicity in older breast cancer patients receiving systemic chemotherapy. Cancer 115, 5319–5328 (2009).

PubMed  Article  Google Scholar 

Shayne, M. et al. Dose intensity and hematologic toxicity in older cancer patients receiving systemic chemotherapy. Cancer 110, 1611–1620 (2007).

PubMed  Article  Google Scholar 

Lyman, G. H. Issues on the use of white blood cell growth factors in oncology practice. Am. Soc. Clin. Oncol. Educ. Book 35, e528–e532 (2016).

PubMed  Article  Google Scholar 

Lyman, G. H. Risk assessment in oncology clinical practice. From risk factors to risk models. Oncology 17, 8–13 (2003).

PubMed  Google Scholar 

Dale, D., Crawford, J. & Lyman, G. H. Myelotoxicity and dose intensity of chemotherapy: reporting practices from randomized clinical trials. J. Natl Compr. Cancer Netw. 1, 440–454 (2003).

CAS  Article  Google Scholar 

Kuderer, N. M. & Wolff, A. C. Enhancing therapeutic decision making when options abound: toxicities matter. J. Clin. Oncol. 32, 1990–1993 (2014).

PubMed  Article  Google Scholar 

Truong, J. et al. Interpreting febrile neutropenia rates from randomized controlled trials for consideration of primary prophylaxis in the real world: a systematic review and meta-analysis. Ann. Oncol. 27, 608–618 (2015).

PubMed  Article  Google Scholar 

Gonzalez-Barca, E. et al. Prognostic factors influencing mortality in cancer patients with neutropenia and bacteremia. Eur. J. Clin. Microbiol. Infect. Dis. 18, 539–544 (1999).

CAS  PubMed  Article  Google Scholar 

Darmon, M. et al. Impact of neutropenia duration on short-term mortality in neutropenic critically ill cancer patients. Intensive Care Med. 28, 1775–1780 (2002).

PubMed  Article  Google Scholar 

Carratala, J. et al. Bacteremic pneumonia in neutropenic patients with cancer: causes, empirical antibiotic therapy, and outcome. Arch. Intern. Med. 158, 868–872 (1998).

CAS  PubMed  Article  Google Scholar 

Kuderer, N. M. et al. Impact of primary prophylaxis with granulocyte colony-stimulating factor on febrile neutropenia and mortality in adult cancer patients receiving chemotherapy: a systematic review. J. Clin. Oncol. 25, 3158–3167 (2007).

CAS  PubMed  Article  Google Scholar 

Bodey, G. P. et al. Quantitative relationships between circulating leukocytes and infection in patients with acute leukemia. Ann. Intern. Med. 64, 328–340 (1966).

CAS  PubMed  Article  Google Scholar 

Crawford, J., Dale, D. C. & Lyman, G. H. Chemotherapy-induced neutropenia: risks, consequences, and new directions for its management. Cancer 100, 228–237 (2004).

PubMed  Article  Google Scholar 

Blackwell S., Crawford J. In Filgrastim (r-metHuG-CSF) in Clinical Practice (eds Morsten G., Dexter T.) pp 103–116 (Marcel Dekker, 1994).

Lyman, G. H. et al. Risk of febrile neutropenia among patients with intermediate-grade non-Hodgkin’s lymphoma receiving CHOP chemotherapy. Leuk. Lymphoma 44, 2069–2076 (2003).

CAS  PubMed  Article  Google Scholar 

Lyman, G. H. & Delgado, D. J. Risk and timing of hospitalization for febrile neutropenia in patients receiving CHOP, CHOP-R, or CNOP chemotherapy for intermediate-grade non-Hodgkin lymphoma. Cancer 98, 2402–2409 (2003).

PubMed  Article  Google Scholar 

Crawford, J. et al. Risk and timing of neutropenic events in adult cancer patients receiving chemotherapy: the results of a prospective nationwide study of oncology practice. J. Natl Compr. Cancer Netw. 6, 109–118 (2008).

Article  Google Scholar 

Culakova, E. et al. Patterns of chemotherapy-associated toxicity and supportive care in US oncology practice: a nationwide prospective cohort study. Cancer Med. 3, 434–444 (2014).

CAS  PubMed  PubMed Central  Article  Google Scholar 

Crawford, J. et al. Reduction by granulocyte colony-stimulating factor of fever and neutropenia induced by chemotherapy in patients with small-cell lung cancer

留言 (0)

沒有登入
gif