Antiangiogenic–immune-checkpoint inhibitor combinations: lessons from phase III clinical trials

Bagchi, S., Yuan, R. & Engleman, E. G. Immune checkpoint inhibitors for the treatment of cancer: clinical impact and mechanisms of response and resistance. Annu. Rev. Pathol. 16, 223–249 (2021).

Article  CAS  PubMed  Google Scholar 

Blasutig, I. M. et al. The phoenix rises: the rebirth of cancer immunotherapy. Clin. Chem. 63, 1190–1195 (2017).

Article  CAS  PubMed  Google Scholar 

Abi-Aad, S. J., Zouein, J., Chartouni, A., Naim, N. & Kourie, H. R. Simultaneous inhibition of PD-1 and LAG-3: the future of immunotherapy? Immunotherapy 15, 611–618 (2023).

Article  CAS  PubMed  Google Scholar 

Tawbi, H. A. et al. Relatlimab and nivolumab versus nivolumab in untreated advanced melanoma. N. Engl. J. Med. 386, 24–34 (2022).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Syn, N. L., Teng, M. W. L., Mok, T. S. K. & Soo, R. A. De-novo and acquired resistance to immune checkpoint targeting. Lancet Oncol. 18, e731–e741 (2017).

Article  PubMed  Google Scholar 

Jenkins, R. W., Barbie, D. A. & Flaherty, K. T. Mechanisms of resistance to immune checkpoint inhibitors. Br. J. Cancer 118, 9–16 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gide, T. N., Wilmott, J. S., Scolyer, R. A. & Long, G. V. Primary and acquired resistance to immune checkpoint inhibitors in metastatic melanoma. Clin. Cancer Res. 24, 1260–1270 (2018).

Article  CAS  PubMed  Google Scholar 

Andrews, A. Treating with checkpoint inhibitors – figure $1 million per patient. Am. Health Drug. Benefits 8, 9 (2015).

PubMed  PubMed Central  Google Scholar 

Baxi, S. et al. Immune-related adverse events for anti-PD-1 and anti-PD-L1 drugs: systematic review and meta-analysis. BMJ 360, k793 (2018).

Article  PubMed  PubMed Central  Google Scholar 

Motzer, R. J. et al. Nivolumab plus ipilimumab versus sunitinib in advanced renal-cell carcinoma. N. Engl. J. Med. 378, 1277–1290 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Carreau, N. A. & Pavlick, A. C. Nivolumab and ipilimumab: immunotherapy for treatment of malignant melanoma. Future Oncol. 15, 349–358 (2019).

Article  CAS  PubMed  Google Scholar 

Nikoo, M. et al. Nivolumab plus ipilimumab combination therapy in cancer: current evidence to date. Int. Immunopharmacol. 117, 109881 (2023).

Article  CAS  PubMed  Google Scholar 

Baas, P. et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial. Lancet 397, 375–386 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, C. et al. The landscape of immune checkpoint inhibitor plus chemotherapy versus immunotherapy for advanced non-small-cell lung cancer: a systematic review and meta-analysis. J. Cell Physiol. 235, 4913–4927 (2020).

Article  CAS  PubMed  Google Scholar 

Galluzzi, L., Humeau, J., Buqué, A., Zitvogel, L. & Kroemer, G. Immunostimulation with chemotherapy in the era of immune checkpoint inhibitors. Nat. Rev. Clin. Oncol. 17, 725–741 (2020).

Article  PubMed  Google Scholar 

Cao, Y., Langer, R. & Ferrara, N. Targeting angiogenesis in oncology, ophthalmology and beyond. Nat. Rev. Drug. Discov. 22, 476–495 (2023).

Article  CAS  PubMed  Google Scholar 

Schmidt, E. V. Developing combination strategies using PD-1 checkpoint inhibitors to treat cancer. Semin. Immunopathol. 41, 21–30 (2019).

Article  CAS  PubMed  Google Scholar 

Motz, G. T. & Coukos, G. The parallel lives of angiogenesis and immunosuppression: cancer and other tales. Nat. Rev. Immunol. 11, 702–711 (2011).

Article  CAS  PubMed  Google Scholar 

Heijmen, L. et al. Monitoring hypoxia and vasculature during bevacizumab treatment in a murine colorectal cancer model. Contrast Media Mol. imaging 9, 237–245 (2014).

Article  CAS  PubMed  Google Scholar 

Franco, M. et al. Targeted anti-VEGFR-2 therapy leads to short and long term impairment of vascular function and increases in tumor hypoxia. Cancer Res. 66, 3639–3648 (2006).

Article  CAS  PubMed  Google Scholar 

Chang, W. H. & Lai, A. G. The hypoxic tumour microenvironment: a safe haven for immunosuppressive cells and a therapeutic barrier to overcome. Cancer Lett. 487, 34–44 (2020).

Article  CAS  PubMed  Google Scholar 

Kopecka, J. et al. Hypoxia as a driver of resistance to immunotherapy. Drug. Resist. Updat. 59, 100787 (2021).

Article  CAS  PubMed  Google Scholar 

Wang, B. et al. Targeting hypoxia in the tumor microenvironment: a potential strategy to improve cancer immunotherapy. J. Exp. Clin. Cancer Res. 40, 24 (2021).

Article  PubMed  PubMed Central  Google Scholar 

Khan, K. A. & Kerbel, R. S. Improving immunotherapy outcomes with antiangiogenic treatments and vice versa. Nat. Rev. Clin. Oncol. 15, 310–324 (2018).

Article  CAS  PubMed  Google Scholar 

Fukumura, D., Kloepper, J., Amoozgar, Z., Duda, D. G. & Jain, R. K. Enhancing cancer immunotherapy using antiangiogenics: opportunities and challenges. Nat. Rev. Clin. Oncol. 15, 325–340 (2018).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Gabrilovich, D. I. et al. Production of vascular endothelial growth factor by human tumors inhibits the functional maturation of dendritic cells. Nat. Med. 2, 1096–1103 (1996).

Article  CAS  PubMed  Google Scholar 

Gabrilovich, D. I. & Nagaraj, S. Myeloid-derived suppressor cells as regulators of the immune system. Nat. Rev. Immunol. 9, 162–174 (2009).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Voron, T. et al. VEGF-A modulates expression of inhibitory checkpoints on CD8+ T-cells in tumors. J. Exp. Med. 212, 139–148 (2015).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Kim, C. G. et al. VEGF-A drives TOX-dependent T-cell exhaustion in anti-PD-1-resistant microsatellite stable colorectal cancers. Sci. Immunol. 4, eaay0555 (2019).

Article  CAS  PubMed  Google Scholar 

Huinen, Z. R., Huijbers, E. J. M., van Beijnum, J. R., Nowak-Sliwinska, P. & Griffioen, A. W. Anti-angiogenic agents – overcoming tumour endothelial cell anergy and improving immunotherapy outcomes. Nat. Rev. Clin. Oncol. 18, 527–540 (2021).

Article  PubMed  Google Scholar 

Huijbers, E. J. M. et al. Tumors resurrect an embryonic vascular program to escape immunity. Sci. Immunol. 7, eabm6388 (2022).

Article  CAS  PubMed  Google Scholar 

Motz, G. T. et al. Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat. Med. 20, 607–615 (2014).

Article  CAS  PubMed  PubMed Central  Google Scholar 

Allen, E. et al. Combined antiangiogenic and anti–PD-L1 therapy stimulates tumor immunity through HEV formation. Sci. Transl. Med. 9, eaak9679 (2017).

Article  PubMed  PubMed Central  Google Scholar 

Jain, R. K. Molecular regulation of vessel maturation. Nat. Med. 9, 685–693 (2003).

Article  CAS  PubMed  Google Scholar 

Baluk, P., Hashizume, H. & McDonald, D. M. Cellular abnormalities of blood vessels as targets in cancer. Curr. Opin. Genet. Dev. 15, 102–111 (2005).

Article  CAS  PubMed  Google Scholar 

Jain, R. K. Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat. Med. 7, 987–989 (2001).

Article  CAS  PubMed  Google Scholar 

Singleton, D. C., Macann, A. & Wilson, W. R. Therapeutic targeting of the hypoxic tumour microenvironment. Nat. Rev. Clin. Oncol. 18, 751–772 (2021).

Article  PubMed  Google Scholar 

Stylianopoulos, T. et al. Causes, consequences, and remedies for growth-induced solid stress in murine and human tumors. Proc. Natl Acad. Sci. USA 109, 15101–15108 (2012).

Article 

留言 (0)

沒有登入
gif