Correlates of whole blood metal concentrations among reproductive-aged Black women

Rehman K, Fatima F, Waheed I, Akash MSH. Prevalence of exposure of heavy metals and their impact on health consequences. J Cell Biochem. 2018;119:157–84.

CAS  PubMed  Article  Google Scholar 

Rzymski P, Tomczyk K, Rzymski P, Poniedziałek B, Opala T, Wilczak M. Impact of heavy metals on the female reproductive system. Ann Agric Environ Med. 2015;22:259–64.

CAS  PubMed  Article  Google Scholar 

Ma Y, He X, Qi K, Wang T, Qi Y, Cui L, et al. Effects of environmental contaminants on fertility and reproductive health. J Environ Sci. 2019;77:210–7.

CAS  Article  Google Scholar 

Tanrikut E, Karaer A, Celik O, Celik E, Otlu B, Yilmaz E, et al. Role of endometrial concentrations of heavy metals (cadmium, lead, mercury and arsenic) in the aetiology of unexplained infertility. Eur J Obstet Gynecol Reprod Biol. 2014;179:187–90.

CAS  PubMed  Article  Google Scholar 

Choy CMY, Lam CWK, Cheung LTF, Briton-Jones CM, Cheung LP, Haines CJ. Infertility, blood mercury concentrations and dietary seafood consumption: A case-control study. BJOG. 2002;109:1121–5.

CAS  PubMed  Google Scholar 

Johnstone EB, Louis GMB, Parsons PJ, Steuerwald AJ, Palmer CD, Chen Z, et al. Increased urinary cobalt and whole blood concentrations of cadmium and lead in women with uterine leiomyomata: Findings from the ENDO Study. Reprod Toxicol. 2014;49:27–32.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Jackson LW, Zullo MD, Goldberg JM. The association between heavy metals, endometriosis and uterine myomas among premenopausal women: National Health and Nutrition Examination Survey 1999-2002. Hum Reprod. 2008;23:679–87.

CAS  PubMed  Article  Google Scholar 

Åkesson A, Julin B, Wolk A. Long-term dietary cadmium intake and postmenopausal endometrial cancer incidence: A population-based prospective cohort study. Cancer Res. 2008;68:6435–41.

PubMed  Article  CAS  Google Scholar 

Wang X, Karvonen-Gutierrez CA, Herman WH, Mukherjee B, Harlow SD, Park SK. Urinary metals and incident diabetes in midlife women: Study of Women’s Health Across the Nation (SWAN). BMJ Open Diabetes Res Care. 2020;8:e001233.

PubMed  PubMed Central  Article  Google Scholar 

Chowdhury R, Ramond A, O’Keeffe LM, Shahzad S, Kunutsor SK, Muka T, et al. Environmental toxic metal contaminants and risk of cardiovascular disease: Systematic review and meta-analysis. BMJ. 2018. https://doi.org/10.1136/bmj.k3310.k3310

Article  PubMed  PubMed Central  Google Scholar 

Morello-Frosch R, Lopez R. The riskscape and the color line: Examining the role of segregation in environmental health disparities. Environ Res. 2006;102:181–96.

CAS  PubMed  Article  Google Scholar 

Bulka CM, Bommarito PA, Fry RC. Predictors of toxic metal exposures among US women of reproductive age. J Expo Sci Environ Epidemiol. 2019;29:597–612.

PubMed  PubMed Central  Article  Google Scholar 

Nguyen VK, Kahana A, Heidt J, Polemi K, Kvasnicka J, Jolliet O, et al. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014. Environ Int. 2020;137:105496.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Awata H, Linder S, Mitchell LE, Delclos GL. Association of dietary intake and biomarker levels of arsenic, cadmium, lead, and mercury among Asian populations in the United States: NHANES 2011–2. Environ Health Perspect. 2017;125:314–23.

CAS  PubMed  Article  Google Scholar 

Wang X, Mukherjee B, Batterman S, Harlow SD, Park SK. Urinary metals and metal mixtures in midlife women: The Study of Women’s Health Across the Nation (SWAN). Int J Hyg Environ Health. 2019;222:778–89.

PubMed  PubMed Central  Article  Google Scholar 

Pang Y, Peng RD, Jones MR, Francesconi KA, Goessler W, Howard BV, et al. Metal mixtures in urban and rural populations in the US: The Multi-Ethnic Study of Atherosclerosis and the Strong Heart Study. Environ Res. 2016;147:356–64.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Ashrap P, Watkins DJ, Mukherjee B, Boss J, Richards MJ, Rosario Z, et al. Predictors of urinary and blood metal(loid) concentrations among pregnant women in Northern Puerto Rico. Environ Res. 2020;183:109178.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Osorio-Yáñez C, Gelaye B, Enquobahrie DA, Qiu C, Williams MA. Dietary intake and urinary metals among pregnant women in the Pacific Northwest. Environ Pollut. 2018;236:680–8.

PubMed  Article  CAS  Google Scholar 

Kalloo G, Wellenius GA, McCandless L, Calafat AM, Sjodin A, Karagas M, et al. Profiles and predictors of environmental chemical mixture exposure among pregnant women: The Health Outcomes and Measures of the Environment Study. Environ Sci Technol. 2018;52:10104–13.

CAS  PubMed  Article  Google Scholar 

Farzan SF, Howe CG, Chavez TA, Hodes TL, Johnston JE, Habre R, et al. Demographic predictors of urinary arsenic in a low-income predominantly Hispanic pregnancy cohort in Los Angeles. J Expo Sci Environ Epidemiol. 2021;31:94–107.

CAS  PubMed  Article  Google Scholar 

Kim SS, Meeker JD, Carroll R, Zhao S, Mourgas MJ, Richards MJ, et al. Urinary trace metals individually and in mixtures in association with preterm birth. Environ Int. 2018;121:582–90.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Lin PD, Cardenas A, Rifas-Shiman SL, Hivert MF, James-Todd T, Amarasiriwardena C, et al. Diet and erythrocyte metal concentrations in early pregnancy-cross-sectional analysis in Project Viva. Am J Clin Nutr. 2021;114:540–9.

PubMed  PubMed Central  Article  Google Scholar 

Watson CV, Lewin M, Ragin-Wilson A, Jones R, Jarrett JM, Wallon K, et al. Characterization of trace elements exposure in pregnant women in the United States, NHANES 1999-2016. Environ Res. 2020;183:109208.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Baird DD, Harmon QE, Upson K, Moore KR, Barker-Cummings C, Baker S, et al. A prospective, ultrasound-based study to evaluate risk factors for uterine fibroid incidence and growth: Methods and results of recruitment. J Women’s Health (Larchmt). 2015;24:907–15.

Article  Google Scholar 

Block G, Hartman AM, Dresser CM, Carroll MD, Gannon J, Gardner L. A data-based approach to diet questionnaire design and testing. Am J Epidemiol. 1986;124:453–69.

CAS  PubMed  Article  Google Scholar 

Schisterman EF, Vexler A, Whitcomb BW, Liu A. The limitations due to exposure detection limits for regression models. Am J Epidemiol. 2006;163:374–83.

PubMed  Article  Google Scholar 

Hornung RW, Reed LD. Estimation of average concentration in the presence of nondetectable values. Appl Occup Environ Hyg. 1990;5:46–51.

CAS  Article  Google Scholar 

Centers for Disease Control and Prevention (CDC), National Center for Health Statistics (NCHS). National Health and Nutrition Examination Survey Data. Hyattsville, MD: U.S. Department of Health and Human Services, 2011–2012.

Sterne JA, White IR, Carlin JB, Spratt M, Royston P, Kenward MG, et al. Multiple imputation for missing data in epidemiological and clinical research: potential and pitfalls. BMJ. 2009;338:b2393.

PubMed  PubMed Central  Article  Google Scholar 

Rubin DB, Multiple Imputation for Nonresponse in Surveys. John Wiley & Sons: New York, 1987.

Jackson LW, Howards PP, Wactawski-Wende J, Schisterman EF. The association between cadmium, lead and mercury blood levels and reproductive hormones among healthy, premenopausal women. Hum Reprod. 2011;26:2887–95.

CAS  PubMed  PubMed Central  Article  Google Scholar 

Tyrrell J, Melzer D, Henley W, Galloway TS, Osborne NJ. Associations between socioeconomic status and environmental toxicant concentrations in adults in the USA: NHANES 2001–2010. Environ Int. 2013;59:328–35.

CAS  PubMed  Article  Google Scholar 

Jones MR, Tellez-Plaza M, Vaidya D, Grau-Perez M, Post WS, Kaufman JD, et al. Ethnic, geographic and dietary differences in arsenic exposure in the multi-ethnic study of atherosclerosis (MESA). J Expo Sci Environ Epidemiol. 2019;29:310–22.

CAS  PubMed  Article  Google Scholar 

Cusack LK, Smit E, Kile ML, Harding AK. Regional and temporal trends in blood mercury concentrations and fish consumption in women of child bearing age in the United States using NHANES data from 1999–2010. Environ Health. 2017;16:10.

PubMed  PubMed Central  Article  Google Scholar 

Lewin A, Arbuckle TE, Fisher M, Liang CL, Marro L, Davis K, et al. Univariate predictors of maternal concentrations of environmental chemicals: The MIREC study. Int J Hyg Environ Health. 2017;220:77–85.

CAS  PubMed  Article  Google Scholar 

Edwards SE, Maxson P, Miranda ML, Fry RC. Cadmium levels in a North Carolina cohort: Identifying risk factors for elevated levels during pregnancy. J Expo Sci Environ Epidemiol. 2015;25:427–32.

CAS  PubMed  Article  Google Scholar 

Mahaffey KR, Clickner RP, Jeffries RA. Adult women’s blood mercury concentrations vary regionally in the United States: Association with patterns of fish consumption (NHANES 1999–2004). Environ Health Perspect. 2009;117:47–53.

CAS  PubMed  Article  Google Scholar 

Jones RL, Homa DM, Meyer PA, Brody DJ, Caldwell KL, Pirkle JL, et al. Trends in blood lead levels and blood lead testing among US children aged 1 to 5 years, 1988-2004. Pediatrics. 2009;123:e376–385.

PubMed  Article 

留言 (0)

沒有登入
gif