Visuomotor Adaptation Deficits in Patients with Essential Tremor

Chandran V, Pal PK, Reddy JYC, et al. Non-motor features in essential tremor. Acta Neurol Scand. 2012;125:332–7. https://doi.org/10.1111/j.1600-0404.2011.01573.x.

CAS  Article  PubMed  Google Scholar 

Axelrad JE, Louis ED, Honig LS, et al. Reduced Purkinje cell number in essential tremor: a postmortem study. Arch Neurol. 2008;65:101–7. https://doi.org/10.1001/archneurol.2007.8.

Article  PubMed  PubMed Central  Google Scholar 

Bagepally BS, Bhatt MD, Chandran V, et al. Decrease in cerebral and cerebellar gray matter in essential tremor: a voxel-based morphometric analysis under 3T MRI. J Neuroimaging. 2012;22:275–8. https://doi.org/10.1111/j.1552-6569.2011.00598.x.

Article  PubMed  Google Scholar 

Cerasa A, Quattrone A. Linking essential tremor to the cerebellum-neuroimaging evidence. Cerebellum. 2016;15:263–75. https://doi.org/10.1007/s12311-015-0739-8.

CAS  Article  PubMed  Google Scholar 

Cerasa A, Messina D, Nicoletti G, et al. Cerebellar atrophy in essential tremor using an automated segmentation method. Am J Neuroradiol. 2009;30:1240–3. https://doi.org/10.3174/ajnr.A1544.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Choe M, Cortés E, Vonsattel J-PG, et al. Purkinje cell loss in essential tremor: random sampling quantification and nearest neighbor analysis. Mov Disord. 2016;31:393–401. https://doi.org/10.1002/mds.26490.

Article  PubMed  PubMed Central  Google Scholar 

Lin C-Y, Louis ED, Faust PL, et al. Abnormal climbing fibre-Purkinje cell synaptic connections in the essential tremor cerebellum. Brain. 2014;137:3149–59. https://doi.org/10.1093/brain/awu281.

Article  PubMed  PubMed Central  Google Scholar 

Louis ED, Faust PL, Ma KJ, et al. Torpedoes in the cerebellar vermis in essential tremor cases vs. controls. Cerebellum. 2011;10:812–9. https://doi.org/10.1007/s12311-011-0291-0.

Article  PubMed  Google Scholar 

Pan MK, Li YS, Wong SB, Ni CL, Wang YM, Liu WC, Lu LY, Lee JC, Cortes EP, Vonsattel JG, Sun Q, Louis ED, Faust PL, Kuo SH. Cerebellar oscillations driven by synaptic pruning deficits of cerebellar climbing fibers contribute to tremor pathophysiology. Sci Transl Med. 2020;12(526):eaay1769.https://doi.org/10.1126/scitranslmed.aay1769.

Louis ED, Kuo S-H, Vonsattel J-PG, et al. Torpedo formation and Purkinje cell loss: modeling their relationship in cerebellar disease. Cerebellum. 2014;13:433–9. https://doi.org/10.1007/s12311-014-0556-5.

Article  PubMed  PubMed Central  Google Scholar 

Deuschl G, Elble R. Essential tremor–neurodegenerative or nondegenerative disease towards a working definition of ET. Mov Disord. 2009;24:2033–41. https://doi.org/10.1002/mds.22755.

Article  PubMed  Google Scholar 

Luo R, Pan P, Xu Y, et al. No reliable gray matter changes in essential tremor. Neurol Sci. 2019;40:2051–63. https://doi.org/10.1007/s10072-019-03933-0.

Article  PubMed  Google Scholar 

Rajput AH, Robinson CA, Rajput ML, et al. Essential tremor is not dependent upon cerebellar Purkinje cell loss. Parkinsonism Relat Disord. 2012;18:626–8. https://doi.org/10.1016/j.parkreldis.2012.01.013.

CAS  Article  PubMed  Google Scholar 

Benito-León J, Alvarez-Linera J, Hernández-Tamames JA, et al. Brain structural changes in essential tremor: voxel-based morphometry at 3-Tesla. J Neurol Sci. 2009;287:138–42. https://doi.org/10.1016/j.jns.2009.08.037.

Article  PubMed  Google Scholar 

Buijink AWG, Broersma M, van der Stouwe AMM, et al. Rhythmic finger tapping reveals cerebellar dysfunction in essential tremor. Parkinsonism Relat Disord. 2015;21:383–8. https://doi.org/10.1016/j.parkreldis.2015.02.003.

CAS  Article  PubMed  Google Scholar 

Quattrone A, Cerasa A, Messina D, et al. Essential head tremor is associated with cerebellar vermis atrophy: a volumetric and voxel-based morphometry MR imaging study. Am J Neuroradiol. 2008;29:1692–7. https://doi.org/10.3174/ajnr.A1190.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Pietracupa S, Bologna M, Bharti K, et al. White matter rather than gray matter damage characterizes essential tremor. Eur Radiol. 2019;29:6634–42. https://doi.org/10.1007/s00330-019-06267-9.

Article  PubMed  Google Scholar 

Saini J, Bagepally BS, Bhatt MD, et al. Diffusion tensor imaging: tract based spatial statistics study in essential tremor. Parkinsonism Relat Disord. 2012;18:477–82. https://doi.org/10.1016/j.parkreldis.2012.01.006.

Article  PubMed  Google Scholar 

Shin DH, Han BS, Kim HS, et al. Diffusion tensor imaging in patients with essential tremor. Am J Neuroradiol. 2008;29:151–3. https://doi.org/10.3174/ajnr.A0744.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Raethjen J, Deuschl G. The oscillating central network of Essential tremor. Clin Neurophysiol. 2012;123:61–4. https://doi.org/10.1016/j.clinph.2011.09.024.

Article  PubMed  Google Scholar 

Schnitzler A, Münks C, Butz M, et al. Synchronized brain network associated with essential tremor as revealed by magnetoencephalography. Mov Disord. 2009;24:1629–35. https://doi.org/10.1002/mds.22633.

Article  PubMed  Google Scholar 

Zhang X, Santaniello S. Role of cerebellar GABAergic dysfunctions in the origins of essential tremor. PNAS. 2019;116:13592–601. https://doi.org/10.1073/pnas.1817689116.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Muthuraman M, Heute U, Arning K, et al. Oscillating central motor networks in pathological tremors and voluntary movements. What makes the difference? Neuroimage. 2012;60:1331–9. https://doi.org/10.1016/j.neuroimage.2012.01.088.

CAS  Article  PubMed  Google Scholar 

Awad A, Blomstedt P, Westling G, et al. Deep brain stimulation in the caudal zona incerta modulates the sensorimotor cerebello-cerebral circuit in essential tremor. Neuroimage. 2020;209: 116511. https://doi.org/10.1016/j.neuroimage.2019.116511.

Article  PubMed  Google Scholar 

van der Madelein Stouwe AM, Nieuwhof F, Helmich RC. Tremor pathophysiology: lessons from neuroimaging. Curr Opin Neurol. 2020;33:474–81. https://doi.org/10.1097/WCO.0000000000000829.

Article  Google Scholar 

Ito M. Cerebellar circuitry as a neuronal machine. Prog Neurobiol. 2006;78:272–303. https://doi.org/10.1016/j.pneurobio.2006.02.006.

Article  PubMed  Google Scholar 

Tzvi E, Bey R, Nitschke M, et al. Motor sequence learning deficits in idiopathic Parkinson’s disease are associated with increased substantia nigra activity. Front Aging Neurosci. 2021;13:319. https://doi.org/10.3389/fnagi.2021.685168.

Article  Google Scholar 

Burciu RG, Reinold J, Rabe K, et al. Structural correlates of motor adaptation deficits in patients with acute focal lesions of the cerebellum. Exp Brain Res. 2014;232:2847–57. https://doi.org/10.1007/s00221-014-3956-3.

Article  PubMed  Google Scholar 

Wong AL, Marvel CL, Taylor JA, et al. Can patients with cerebellar disease switch learning mechanisms to reduce their adaptation deficits? Brain. 2019;142:662–73. https://doi.org/10.1093/brain/awy334.

Article  PubMed  PubMed Central  Google Scholar 

Criscimagna-Hemminger SE, Bastian AJ, Shadmehr R. Size of error affects cerebellar contributions to motor learning. J Neurophysiol. 2010;103:2275–84. https://doi.org/10.1152/jn.00822.2009.

Article  PubMed  PubMed Central  Google Scholar 

Schlerf JE, Xu J, Klemfuss NM, et al. Individuals with cerebellar degeneration show similar adaptation deficits with large and small visuomotor errors. J Neurophysiol. 2013;109:1164–73. https://doi.org/10.1152/jn.00654.2011.

Article  PubMed  Google Scholar 

Werner S, Bock O, Timmann D. The effect of cerebellar cortical degeneration on adaptive plasticity and movement control. Exp Brain Res. 2009;193:189–96. https://doi.org/10.1007/s00221-008-1607-2.

Article  PubMed  Google Scholar 

Fernández-Ruiz J, Hall C, Vergara P, et al. Prism adaptation in normal aging: slower adaptation rate and larger aftereffect. Cogn Brain Res. 2000;9:223–6. https://doi.org/10.1016/S0926-6410(99)00057-9.

Article  Google Scholar 

Hanajima R, Shadmehr R, Ohminami S, et al. Modulation of error-sensitivity during a prism adaptation task in people with cerebellar degeneration. J Neurophysiol. 2015;114:2460–71. https://doi.org/10.1152/jn.00145.2015.

Article  PubMed  PubMed Central  Google Scholar 

Rabe K, Livne O, Gizewski ER, et al. Adaptation to visuomotor rotation and force field perturbation is correlated to different brain areas in patients with cerebellar degeneration. J Neurophysiol. 2009;101:1961–71. https://doi.org/10.1152/jn.91069.2008.

CAS  Article  PubMed  Google Scholar 

Maschke M, Gomez CM, Ebner TJ, et al. Hereditary cerebellar ataxia progressively impairs force adaptation during goal-directed arm movements. J Neurophysiol. 2004;91:230–8. https://doi.org/10.1152/jn.00557.2003.

Article  PubMed  Google Scholar 

Gerwig M, Dimitrova A, Kolb FP, et al. Comparison of eyeblink conditioning in patients with superior and posterior inferior cerebellar lesions. Brain. 2003;126:71–94. https://doi.org/10.1093/brain/awg011.

CAS  Article  PubMed  Google Scholar 

Woodruff-Pak DS, Papka M, Ivry RB. Cerebellar involvement in eyeblink classical conditioning in humans. Neuropsychology. 1996;10:443–58. https://doi.org/10.1037/0894-4105.10.4.443.

Article  Google Scholar 

Gerwig M, Hajjar K, Dimitrova A, et al. Timing of conditioned eyeblink responses is impaired in cerebellar patients. J Neurosci. 2005;25:3919–31. https://doi.org/10.1523/JNEUROSCI.0266-05.2005.

CAS  Article  PubMed  PubMed Central  Google Scholar 

Topka H, Valls-Solé J, Massaquoi SG, et al. Deficit in classical conditioning in patients with cerebellar degeneration. Brain. 1993;116(Pt 4):961–9. https://doi.org/10.1093/brain/116.4.961.

留言 (0)

沒有登入
gif